[en] Color's contribution to rapid categorization of natural images is debated. We examine its effect on high-level face categorization responses using fast periodic visual stimulation (Rossion et al., 2015). A high-density electroencephalogram (EEG) was recorded during presentation of sequences of natural object images every 83 ms (i.e., at F = 12.0 Hz). Natural face images were embedded in the sequence at a fixed interval of F/9 (1.33 Hz). There were four conditions: (a) full-color images; (b) grayscale images; and (c) and (d) phase-scrambled images from Conditions 1 and 2, respectively, making faces and objects unrecognizable. Observers' task was to respond to color changes of the fixation cross (Experiment 1). We found face-categorization responses at 1.33 Hz and its harmonics (2.67 Hz, etc.) over occipitotemporal areas, with right-hemisphere dominance; responses to color images were not significantly different from those to grayscale images. Behavioral analysis revealed longer response times when images contained color, despite nearly-all-correct performance in all conditions, suggesting that color change in the task might detract from color's contribution to face categorization. We subsequently changed the task to responding to fixation shape changes so that such response-time differences were eliminated (Experiment 2). The aggregate face-categorization response became 21.6% stronger to color than to grayscale images. This color advantage occurred late, at 290-415 ms after stimulus onset. Our results suggest that the color advantage for face categorization interacts with behavior, and that color only has a moderate and relatively late contribution to rapid face categorization in natural images.
Disciplines :
Neurosciences & behavior
Author, co-author :
Or, Charles C-F; Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore ; Psychological Sciences Research Institute & Institute of Neuroscience, University of Louvain, Belgium
RETTER, Talia ; Psychological Sciences Research Institute & Institute of Neuroscience, University of Louvain, Belgium ; Department of Psychology, Center for Integrative Neuroscience, University of Nevada, Reno, USA
Rossion, Bruno; Psychological Sciences Research Institute & Institute of Neuroscience, University of Louvain, Belgium ; Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France ; CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
External co-authors :
yes
Language :
English
Title :
The contribution of color information to rapid face categorization in natural scenes.
Publication date :
01 May 2019
Journal title :
Journal of Vision
eISSN :
1534-7362
Publisher :
Association for Research in Vision and Ophthalmology Inc., United States
This work was supported by Nanyang Technological University Start-Up Grant and National Fund for Scientific Research (F.R.S.-FNRS, Belgium) postdoctoral fellowship to CO (FC 2773), Academic Research Fund (AcRF, Singapore) Tier 1 Grant 2018-T1-001-069 to CO and BR, F.R.S.-FNRS doctoral grant to TLR (FC 7159), and European Research Council (ERC) grant to BR (facessvep 284025).
Bacon-Macé, N., Macé M. J.-M., Fabre-Thorpe, M., & Thorpe, S. J. (2005). The time course of visual processing: Backward masking and natural scene categorization. Vision Research, 45(11), 1459-1469.https://doi.org/10.1016/j.visres.2005.01.004
Bindemann, M., & Burton, A. M. (2009). The role of color in human face detection. Cognitive Science, 33(6), 1144-1156. https://doi.org/10.1111/j.1551-6709.2009.01035.x
Boucart, M., Lenoble, Q., Quettelart, J., Szaffarczyk, S., Despretz, P., & Thorpe, S. J. (2016). Finding faces, animals, and vehicles in far peripheral vision. Journal of Vision, 16(2):10, 1-13, https://doi.org/10. 1167/16.2.10
Bramao, I., Faísca, L., Petersson, K. M., & Reis, A. (2012). The contribution of color to object recognition. In I. Kypraios (Ed.), Advances in object recognition systems (p. 73-88). https://doi.org/10. 5772/34821
Bramao, I., Francisco, A., Inácio, F., Faísca, L., Reis, A., & Petersson, K. M. (2012). Electrophysiological evidence for colour effects on the naming of colour diagnostic and noncolour diagnostic objects. Visual Cognition, 20(10), 1164-1185. https://doi.org/10. 1080/13506285.2012.739215
Butterworth, S. (1930). On the theory of filter amplifiers. Experimental Wireless & the Wireless Engineer, 7(85), 536-541
Cant, J. S., Large, M.-E., McCall, L., & Goodale, M. A. (2008). Independent processing of form, colour, and texture in object perception. Perception, 37(1), 57-78. https://doi.org/10.1068/p5727
Castelhano, M. S., & Henderson, J. M. (2008). The influence of color on the perception of scene gist. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 660-675. https://doi.org/10.1037/0096-1523.34.3.660
Crouzet, S. M., & Thorpe, S. J. (2011). Low-level cues and ultra-fast face detection. Frontiers in Psychology, 2:342, 1-9. https://doi.org/10.3389/fpsyg.2011. 00342
De Dios, J. J. (2007). Skin color and feature-based segmentation for face localization. Optical Engineering, 46(3),037007. https://doi.org/10.1117/1. 2716016
De Heering, A., & Rossion, B. (2015). Rapid categorization of natural face images in the infant right hemisphere. eLife, 4:e06564, 1-14. https://doi.org/10.7554/elife.06564
Delorme, A., Richard, G., & Fabre-Thorpe, M. (2000). Ultra-rapid categorisation of natural scenes does not rely on colour cues: a study in monkeys and humans. Vision Research, 40(16), 2187-2200. https://doi.org/10.1016/s0042-6989(00)00083-3
Dzhelyova, M., & Rossion, B. (2014). The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation. BMC Neuroscience, 15:87, 1-12. https://doi.org/10.1186/1471-2202-15-87
Gegenfurtner, K. R., & Rieger, J. (2000). Sensory and cognitive contributions of color to the recognition of natural scenes. Current Biology, 10(13), 805-808. https://doi.org/10.1016/S0960-9822(00)00563-7
Goffaux, V., Jacques, C., Mouraux, A., Oliva, A., Schyns, P. G., & Rossion, B. (2005). Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 12(6), 878-892. https://doi.org/10.1080/13506280444000562
Graf, H. P., Chen, T., Petajan, E., & Cosatto, E. (1995). Locating faces and facial parts. In M. Bichsel (Ed.), Proceedings of the International Workshop on Automatic Face-and Gesture-Recognition, 41-46. Zurich, Switzerland: Universität Zürich. Multimedia Laboratory des Instituts f ür Informatik
Graf, H. P., Cosatto, E., Gibbon, D., Kocheisen, M., & Petajan, E. (1996). Multi-modal system for locating heads and faces. In M. E. Kavanaugh (Ed.), Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, 88-93.Los Alamitos, CA: IEEE Computer Society Press. https://doi.org/10.1109/afgr.1996.557248
Hansen, T., Olkkonen, M., Walter, S., & Gegenfurtner, K. R. (2006). Memory modulates color appearance. Nature Neuroscience, 9(11), 1367-1368. https://doi. org/10.1038/nn1794
Hécaen, H., & Angelergues, R. (1962). Agnosia for faces (prosopagnosia). Archives of Neurology, 7(2), 92-100. https://doi.org/10.1001/archneur.1962. 04210020014002
Jacques, C., Retter, T. L., & Rossion, B. (2016). A single glance at natural face images generate larger and qualitatively different category-selective spatiotemporal signatures than other ecologically-rele-vant categories in the human brain. NeuroImage, 137, 21-33. https://doi.org/10.1016/j.neuroimage. 2016.04.045
Jonas, J., Jacques, C., Liu-Shuang, J., Brissart, H., Colnat-Coulbois, S., Maillard, L., & Rossion, B. (2016). A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proceedings of the National Academy of Sciences, 113(28), E4088-E4097. https://doi.org/10. 1073/pnas.1522033113
Jung, T.-P., Makeig, S., Lee, T.-W., McKeown, M. J., Brown, G., Bell, A. J., & Sejnowski, T. J. (2000). Independent component analysis of biomedical signals. Proceedings of the 2nd International Workshop on Independent Component Analysis and Blind Signal Separation, 633-644
Lafer-Sousa, R., Conway, B. R., & Kanwisher, N. G. (2016). Color-biased regions of the ventral visual pathway lie between face-and place-selective regions in humans, as in macaques. The Journal of Neuroscience, 36(5), 1682-1697. https://doi.org/10. 1523/jneurosci.3164-15.2016
Laganaro, M. (2014). ERP topographic analyses from concept to articulation in word production studies. Frontiers in Psychology, 5:493, 1-10. https://doi. org/10.3389/fpsyg.2014.00493
Lewis, M. B., & Edmonds, A. J. (2003). Face detection: Mapping human performance. Perception, 32(8), 903-920. https://doi.org/10.1068/p5007
Lewis, M. B., & Edmonds, A. J. (2005). Searching for faces in scrambled scenes. Visual Cognition, 12(7), 1309-1336. https://doi.org/10.1080/13506280444000535
Mollon, J. D. (1989). ''Tho' she kneel'd in that place where they grew. .'' The uses and origins of primate colour vision. Journal of Experimental Biology, 146, 21-38
Mouraux, A., Iannetti, G. D., Colon, E., Nozaradan, S., Legrain, V., & Plaghki, L. (2011). Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. Journal of Neuroscience, 31(16), 6079-6087. https://doi.org/10.1523/jneurosci.3977-10. 2011
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
Oliva, A., & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology, 41(2), 176-210. https://doi.org/10.1006/cogp.1999. 0728
Otsuka, S., & Kawaguchi, J. (2009). Direct versus indirect processing changes the influence of color in natural scene categorization. Attention, Perception & Psychophysics, 71(7), 1588-1597. https://doi.org/10.3758/app.71.7.1588
Price, C. J., & Humphreys, G. W. (1989). The effects of surface detail on object categorization and naming. The Quarterly Journal of Experimental Psychology Section A, 41(4), 797-828. https://doi.org/10.1080/14640748908402394
Quek, G. L., & Rossion, B. (2017). Category-selective human brain processes elicited in fast periodic visual stimulation streams are immune to temporal predictability. Neuropsychologia, 104, 182-200. https://doi.org/10.1016/j.neuropsychologia.2017. 08.010
Regan, D., & Tyler, C. W. (1971). Wavelengthmodulated light generator. Vision Research, 11(1), 43-56. https://doi.org/10.1016/0042-6989(71)90204-5
Retter, T. L., & Rossion, B. (2016). Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 91, 9-28. https://doi.org/10. 1016/j.neuropsychologia.2016.07.028
Rossion, B., Alonso Pireto, E., Boremanse, A., Kuefner, D., & Van Belle, G. (2012). A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. NeuroImage, 63(3), 1585-1600. https://doi.org/10.1016/j.neuroimage.2012. 08.033
Rossion, B., & Boremanse, A. (2011). Robust sensitivity to facial identity in the right human occipitotemporal cortex as revealed by steady-state visualevoked potentials. Journal of Vision, 11(2):16, 1-21, https://doi.org/10.1167/11.2.16
Rossion, B., & Caharel, S. (2011). ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception. Vision Research, 51(12), 1297-1311. https://doi.org/10.1016/j.visres.2011.04. 003
Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., & Crommelinck, M. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of facespecific processes in the human brain. NeuroReport, 11(1), 69-74
Rossion, B., & Jacques, C. (2008). Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. NeuroImage, 39, 1959-1979. https://doi.org/10.1016/j.neuroimage. 2007.10.011
Rossion, B., Jacques, C., & Jonas, J. (2018). Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings. Annals of the New York Academy of Sciences, 1426(1), 5-24. https://doi.org/10.1111/nyas.13596
Rossion, B., & Pourtois, G. (2004). Revisiting Snodgrass and Vanderwart's object pictorial set: The role of surface detail in basic-level object recognition. Perception, 33(2), 217-236. https://doi.org/10. 1068/p5117
Rossion, B., Torfs, K., Jacques, C., & Liu-Shuang, J. (2015). Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. Journal of Vision, 15(1):18, 1-18, https://doi.org/10.1167/15.1.18
Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2007). Single-trial EEG dynamics of object and face visual processing. NeuroImage, 36(3), 843-862. https://doi.org/10.1016/j.neuroimage.2007.02. 052
Saarela, T. P., & Landy, M. S. (2012). Combination of texture and color cues in visual segmentation. Vision Research, 58, 59-67. https://doi.org/10.1016/j.visres.2012.01.019
Sadr, J., & Sinha, P. (2004). Object recognition and Random Image Structure Evolution. Cognitive Science, 28(2), 259-287. https://doi.org/10.1207/s15516709cog2802_7
Sergent, J., Ohta, S., & MacDonald, B. (1992). Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain, 115(1), 15-36. https://doi.org/10.1093/brain/115.1.15
Tanaka, J., Weiskopf, D., & Williams, P. (2001). The role of color in high-level vision. Trends in Cognitive Sciences, 5(5), 211-215. https://doi.org/10.1016/s1364-6613(00)01626-0
Tanaka, J. W., & Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception & Psychophysics, 61(6), 1140-1153. https://doi.org/10. 3758/bf03207619
Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network: Computation in Neural Systems, 14(3), 391-412. https://doi.org/10.1088/0954-898x/14/3/302
Vandenbroucke, A. R. E., Fahrenfort, J. J., Meuwese, J. D. I., Scholte, H. S., & Lamme, V. A. F. (2014). Prior knowledge about objects determines neural color representation in human visual cortex. Cerebral Cortex, 26(4), 1401-1408. https://doi.org/10.1093/cercor/bhu224
VanRullen, R. (2006). On second glance: Still no highlevel pop-out effect for faces. Vision Research, 46(18), 3017-3027. https://doi.org/10.1016/j.visres. 2005.07.009
Wu, H., Chen, Q., & Yachida, M. (1999). Face detection from color images using a fuzzy pattern matching method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(6), 557-563. https://doi.org/10.1109/34.771326
Wurm, L. H., Legge, G. E., Isenberg, L. M., & Luebker, A. (1993). Color improves object recognition in normal and low vision. Journal of Experimental Psychology: Human Perception and Performance, 19(4), 899-911. https://doi.org/10. 1037//0096-1523.19.4.899
Yang, J., & Waibel, A. (1996). A real-time face tracker. In P. Storms (Ed.), Proceedings of the Third IEEE Workshop on Applications of Computer Vision, 1-6
Los Alamitos, CA: IEEE Computer Society Press. https://doi.org/10.1109/acv.1996.572043
Yao, A. Y. J., & Einhäuser, W. (2008). Color aids late but not early stages of rapid natural scene recognition. Journal of Vision, 8(16):12, 1-13, https://doi.org/10.1167/8.16.12
Zhu, W., Drewes, J., & Gegenfurtner, K. R. (2013). Animal detection in natural images: Effects of color and image database. PLoS One, 8(10):e75816, 1-14. https://doi.org/10.1371/journal.pone.0075816