Fractional Brownian motion; High-dimensional regime; Malliavin calculus; Multiple stochastic integrals; Rosenblatt process; Stein’s method; Wishart matrix; Statistics and Probability
Abstract :
[en] We study the fluctuations, as d,n → ∞, of the Wishart matrix Wn,d = d1 Xn,dXn,dT associated to a n × d random matrix Xn,d with non-Gaussian entries. We analyze the limiting behavior in distribution of Wn,d in two situations: when the entries of Xn,d are independent elements of a Wiener chaos of arbitrary order and when the entries are partially correlated and belong to the second Wiener chaos. In the first case, we show that the (suitably normalized) Wishart matrix converges in distribution to a Gaussian matrix while in the correlated case, we obtain its convergence in law to a diagonal non-Gaussian matrix. In both cases, we derive the rate of convergence in the Wasserstein distance via Malliavin calculus and analysis on Wiener space.
Disciplines :
Mathematics
Author, co-author :
Bourguin, Solesne; Department of Mathematics and Statistics, Boston University, Boston, United States
DIEZ, Charles-Philippe Manuel ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; CNRS, Laboratoire Paul Painlevé, Université de Lille, UMR 8524, Villeneuve d’Ascq, France
Tudor, Ciprian A.; CNRS, Laboratoire Paul Painlevé, Université de Lille, UMR 8524, Villeneuve d’Ascq, France
External co-authors :
yes
Language :
English
Title :
Limiting behavior of large correlated Wishart matrices with chaotic entries
Publication date :
May 2021
Journal title :
Bernoulli
ISSN :
1350-7265
eISSN :
1573-9759
Publisher :
International Statistical Institute
Volume :
27
Issue :
2
Pages :
1077 - 1102
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
S. Bourguin was supported in part by the Simons Foundation grant 635136. C. Tudor was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01) and MATHAMSUD project SARC (19-MATH-06).
Bishop, A., Del Moral, P. and Niclas, A. (2018). An introduction to Wishart matrix moments. MAL 2 97–208.
Bourguin, S. and Tudor, C.A. (2011). Cramér theorem for gamma random variables. Electron. Commun. Probab. 16 365–378. MR2819659 https://doi.org/10.1214/ECP.v16-1639
Breton, J.-C. and Nourdin, I. (2008). Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion. Electron. Commun. Probab. 13 482–493. MR2447835 https://doi.org/10.1214/ECP.v13-1415
Bubeck, S., Ding, J., Eldan, R. and Rácz, M.Z. (2016). Testing for high-dimensional geometry in random graphs. Random Structures Algorithms 49 503–532. MR3545825 https://doi.org/10.1002/rsa.20633
Bubeck, S. and Ganguly, S. (2018). Entropic CLT and phase transition in high-dimensional Wishart matrices. Int. Math. Res. Not. IMRN 2 588–606. MR3801440 https://doi.org/10.1093/imrn/rnw243
Chronopoulou, A., Tudor, C.A. and Viens, F.G. (2011). Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Commun. Stoch. Anal. 5 161–185. MR2808541 https://doi.org/10.31390/cosa.5.1.10
Clausel, M., Roueff, F., Taqqu, M.S. and Tudor, C. (2014). Asymptotic behavior of the quadratic variation of the sum of two Hermite processes of consecutive orders. Stochastic Process. Appl. 124 2517–2541. MR3192505 https://doi.org/10.1016/j.spa.2014.02.013
Edelman, A., Guionnet, A. and Péché, S. (2016). Beyond universality in random matrix theory. Ann. Appl. Probab. 26 1659–1697. MR3513602 https://doi.org/10.1214/15-AAP1129
Jiang, T. and Li, D. (2015). Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theoret. Probab. 28 804–847. MR3413957 https://doi.org/10.1007/s10959-013-0519-7
Johnstone, I.M. (2007). High dimensional statistical inference and random matrices. In International Congress of Mathematicians. Vol. I 307–333. Zürich: Eur. Math. Soc. MR2334195 https://doi.org/10.4171/022-1/13
Marčenko, V.A. and Pastur, L.A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72 507–536. MR0208649
Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge: Cambridge Univ. Press. MR2962301 https://doi.org/10.1017/CBO9781139084659
Nourdin, I. and Zheng, G. (2018). Asymptotic behavior of large Gaussian correlated Wishart matrices. Available at arXiv:1804.06220.
Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications (New York). Berlin: Springer. MR2200233
Pipiras, V. and Taqqu, M.S. (2017). Long-Range Dependence and Self-Similarity. Cambridge Series in Statistical and Probabilistic Mathematics 45. Cambridge: Cambridge Univ. Press. MR3729426
Rácz, M.Z. and Richey, J. (2019). A smooth transition from Wishart to GOE. J. Theoret. Probab. 32 898–906. MR3959632 https://doi.org/10.1007/s10959-018-0808-2
Rasmussen, C.E. and Williams, C.K.I. (2006). Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. Cambridge, MA: MIT Press. MR2514435
Tudor, C.A. (2013). Analysis of Variations for Self-Similar Processes: A Stochastic Calculus Approach. Probability and Its Applications (New York). Cham: Springer. MR3112799 https://doi.org/10.1007/ 978-3-319-00936-0
Tudor, C.A. and Viens, F.G. (2009). Variations and estimators for self-similarity parameters via Malliavin calculus. Ann. Probab. 37 2093–2134. MR2573552 https://doi.org/10.1214/09-AOP459
Üstünel, A.S. and Zakai, M. (1989). On independence and conditioning on Wiener space. Ann. Probab. 17 1441–1453. MR1048936
Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A 32–52.