[en] Botulinum neurotoxin type A (BoNT/A) cleaves SNAP-25 and interrupts the release of acetylcholine. We previously reported that BoNT/A subtype 2 (BoNT/A2) ameliorates pathologic behavior more effectively than subtype 1 (BoNT/A1) in a rat Parkinson’s disease model. Here, we further show BoNT/A2 has fewer adverse effects than BoNT/A1. We first confirmed that intrastriatal treatments of both BoNT/As had no-effect on dopaminergic terminals in the striatum. SNAP-25 cleaved by BoNT/A2 was strictly localized to the striatum on the injected side; however, SNAP-25 cleaved by BoNT/A1 diffused contralaterally. Furthermore, treatment with BoNT/A1 caused a significant reduction in body weight, while BoNT/A2 treatment did not. These results suggest that BoNT/A2 is more beneficial for clinical application against Parkinson’s disease than BoNT/A1.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
ITAKURA, Masanori ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuroinflammation Group
KOHDA, Tomoko
KUBO, Takeya
SEMI, Yuko
NISHIYAMA, Kazuhiro
AZUMA, Yasu-Taka
NAKAJIMA, Hidemitsu
KOZAKI, Shunji
TAKEUCHI, Tadayoshi
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Botulinum Neurotoxin Type A Subtype 2 Confers Greater Safety than Subtype 1 in a Rat Parkinson’s Disease Model
Antipova, V., Hawlitschka, A., Mix, E., Schmitt, O., Drager, D., Benecke, R. and Wree, A. 2013. Behavioral and structural effects of unilateral intrastriatal injections of botulinum neurotoxin A in the rat model of Parkinson’s disease. J. Neurosci. Res. 91: 838-847.
Antonucci, F., Rossi, C., Gianfranceschi, L., Rossetto, O. and Caleo, M. 2008. Long-distance retrograde effects of botulinum neurotoxin A. J. Neurosci. 28: 3689-3696.
Aoi, M., Date, I., Tomita, S. and Ohmoto, T. 2000. The effect of intrastriatal single injection of GDNF on the nigrostriatal dopaminergic system in hemiparkinsonian rats: behavioral and histological studies using two different dosages. Neurosci. Res. 36: 319-325.
Arndt, J. W., Jacobson, M. J., Abola, E. E., Forsyth, C. M., Tepp, W. H., Marks, J. D., Johnson, E. A. and Stevens, R. C. 2006. A structural perspective of the sequence variability within botulinum neurotoxin subtype A1-A4. J. Mol. Biol. 362: 733-742.
Camargo, C. H., Teive, H. A., Becker, N., Baran, M. H., Scola, R. H. and Werneck, L. C. 2008. Cervical dystonia: clinical and therapeutic features in 85 patients. Arq. Neuropsiquiatr. 66: 15-21.
Coté, T. R., Mohan, A. K., Polder, J. A., Walton, M. K. and Braun, M. M. 2005. Botulinum toxin type A injections: adverse events reported to the US food and drug administration in therapeutic and cosmetic cases. J. Am. Acad. Dermatol. 53: 407-415.
Hawlitschka, A., Antipova, V., Schmitt, O., Witt, M., Benecke, R., Mix, E. and Wree, A. 2013. Intracerebrally applied botulinum neurotoxin in experimental neuroscience. Curr. Pharm. Biotechnol. 14: 124-130.
Itakura, M., Kohda, T., Kubo, T., Semi, Y., Azuma, Y. T., Nakajima, H., Kozaki, S. and Takeuchi, T. 2014. Botulinum neurotoxin type A subtype 2 reduces pathological behaviors more effectively than subtype 1 in a rat Parkinson’s disease model. Biochem. Biophys. Res. Commun. (in press)
Jankovic, J. 2004. Botulinum toxin in clinical practice. J. Neurol. Neurosurg. Psychiatry 75: 951-957.
Kozaki, S., Nakaue, S. and Kamata, Y. 1995. Immunological characterization of the neurotoxin produced by Clostridium botulinum type A associated with infant botulism in Japan. Microbiol. Immunol. 39: 767-774.
Kozaki, S., Sakaguchi, S. and Sakaguchi, G. 1974. Purification and some properties of progenitor toxins of Clostridium botulinum type B. Infect. Immun. 10: 750-756.
Kuehn, B. M. 2009. FDA requires black box warnings on labeling for botulinum toxin products. JAMA 301: 2316.
Lester, D. B., Rogers, T. D. and Blaha, C. D. 2010. AcetylcholineDopamine interactions in the pathophysiology and treatment of CNS disordes. CNS Neurosci. Ther. 16: 137-162.
Meredith, G. E., Sonsalla, P. K. and Chesselet, M. F. 2008. Animal models of Parkinson’s disease progression. Acta Neuropathol. 115: 385-398.
Mukai, Y., Shimatani, Y., Sako, W., Asanuma, K., Nodera, H., Sakamoto, T., Izumi, Y., Kohda, T., Kozaki, S. and Kaji, R. 2014. Comparison between botulinum neurotoxin type A2 and type A1 by electrophysiological study in healthy individuals. Toxicon 81: 32-36.
Obeso, J. A., Rodriguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C. and Rodriguez, M. 2008. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov. Disord. 23: S548-S559.
Paxinos, G., Watson, C., Pennisi, M. and Topple, A. 1985. Bregma, lambda and interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13: 139-143.
Pier, C. L., Chen, C., Tepp, W. H., Lin, G., Janda, K. D., Barbieri, J. T., Pellett, S. and Johnson, E. A. 2011. Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett. 585: 199-206.
Rossetto, O., Megighian, A., Scorzeto, M. and Montecucco, C. 2013. Botulinum neurotoxins. Toxicon 67: 31-36.
Schiavo, G., Matteoli, M. and Montecucco, C. 2000. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80: 717-766.
Sugii, S. and Sakaguchi, G. 1975. Molecular construction of Clostridium botulinum type A toxins. Infect. Immun. 12: 1262- 1270.
Torii, Y., Kiyota, N., Sugimoto, N., Mori, Y., Goto, Y., Harakawa, T., Nakahira, S., Kaji, R., Kozaki, S. and Ginnaga, A. 2011. Comparison of effects of botulinum toxin subtype A1 and A2 using twitch tension assay and rat grip strength test. Toxicon 57: 93-99.
Torii, Y., Akaike, N., Harakawa, T., Kato, K., Sugimoto, N., Goto, Y., Nakahira, S., Kohda, T., Kozaki, S., Kaji, R. and Ginnaga, A. 2011. Type A1 but not type A2 botulinum toxin decreases the grip strength of the contralateral foreleg through axonal transport from the toxin-treated foreleg of rats. J. Pharmacol. Sci. 117: 275-285.
Wree, A., Mix, E., Hawlitschka, A., Antipova, V., Witt, M., Schmitt, O. and Benecke, R. 2011. Intrastriatal botulinum toxin abolishes pathologic rotational behavior and induces axonal varicosities in the 6-OHDA rat model of Parkinson’s disease. Neurobiol. Dis. 41: 291-298.