[en] Polyphenols, especially catechol-type polyphenols, exhibit lysyl oxidase-like activity and mediate oxidative deamination of lysine residues in proteins. Previous studies have shown that polyphenol-mediated oxidative deamination of lysine residues can be associated with altered electrical properties of proteins and increased cross-reactivity with natural IgM antibodies. This interaction suggested that oxidized proteins could act as innate antigens and elicit an innate immune response. However, the structural basis for oxidatively deaminated lysine residues remains unclear. In the present study, to establish the chemistry of lysine oxidation, we characterized oxidation products obtained via incubation of the lysine analog N-biotinyl-5-aminopentylamine (Bt-APA) with eggshell membranes containing lysyl oxidase and identified a unique six-membered ring 2-piperidinol derivative equilibrated with a ring-open product (aldehyde) as the major product. By monitoring these aldehyde/2-piperidinol products, we evaluated the lysyl oxidase-like activity of polyphenols. We also observed that this reaction was mediated by some polyphenols, especially o-diphenolic-type polyphenols, in the presence of copper ions. Interestingly, the natural IgM monoclonal antibody recognized these aldehyde/2-piperidinol products as an innate epitope. These findings establish the existence of a dynamic equilibrium of oxidized lysine and provide important insights into the chemopreventive function of dietary polyphenols for chronic diseases.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Yamaguchi, Kosuke
ITAKURA, Masanori ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuroinflammation Group
Kitazawa, Roma
Lim, Sei-Young
Nagata, Koji
Shibata, Takahiro
Akagawa, Mitsugu
Uchida, Koji
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Oxidative deamination of lysine residues by polyphenols generates an equilibrium of aldehyde and 2-piperidinol products
Date de publication/diffusion :
2021
Titre du périodique :
Journal of Biological Chemistry
ISSN :
0021-9258
eISSN :
1083-351X
Maison d'édition :
American Society for Biochemistry and Molecular Biology, Us md
Stadtman, E. R. (1992) Protein oxidation and aging. Science 257, 1220-1224
Levine, R. L. (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic. Biol. Med. 32, 790-796
Requena, J. R., Chao, C. C., Levine, R. L., and Stadtman, E. R. (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc. Natl. Acad. Sci. U. S. A. 98, 69-74
Akagawa, M., Sasaki, D., Ishii, Y., Kurota, Y., Yotsu-Yamashita, M., Uchida, K., and Suyama, K. (2006) New method for the quantitative determination of major protein carbonyls, α-aminoadipic and γ-glutamic semialdehydes: Investigation of the formation mechanism and chemical nature in vitro and in vivo. Chem. Res. Toxicol. 19, 1059-1065
Kagan, H., and Trackman, P. (1991) Properties and function of lysyl oxidase. Am. J. Respir. Cell Mol. Biol. 5, 206-210
Lucero, H. A., and Kagan, H. M. (2006) Lysyl oxidase: An oxidative enzyme and effector of cell function. Cell. Mol. Life Sci. 63, 2304-2316
Stahmann, M. A., and Spencer, A. K. (1977) Deamination of protein lysyl ϵ-amino groups by peroxidase in vitro. Biopolymers 16, 1299-1306
Lin, H., Levison, B. S., Buffa, J. A., Huang, Y., Fu, X., Wang, Z., Gogonea, V., DiDonato, J. A., and Hazen, S. L. (2017) Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo. Free Radic. Biol. Med. 104, 20-31
Hawkins, C. L., and Davies, M. J. (2019) Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 294, 19683-19708
Akagawa, M., and Suyama, K. (2001) Amine oxidase-like activity of polyphenols. Eur. J. Biochem. 268, 1953-1963
Shah, M. A., Bergethon, P. R., Boak, A. M., Gallop, P. M., and Kagan, H. M. (1992) Oxidation of peptidyl lysine by copper complexes of pyrroloquinoline quinone and other quinones. A model for oxidative pathochemistry. Biochim. Biophys. Acta 1159, 311-318
Akagawa, M., Nakano, M., and Ikemoto, K. (2016) Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci. Biotechnol. Biochem. 80, 13-22
Akagawa, M., Shigemitsu, T., and Suyama, K. (2005) Oxidative deamination of benzylamine and lysine residue in bovine serum albumin by green tea, black tea, and coffee. J. Agric. Food Chem. 53, 8019-8024
Ishii, T., Mori, T., Tanaka, T., Mizuno, D., Yamaji, R., Kumazawa, S., Nakayama, T., and Akagawa, M. (2008) Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation. Free Radic. Biol. Med. 45, 1384-1394
Ishii, T., Mori, T., Ichikawa, T., Kaku, M., Kusaka, K., Uekusa, Y., Akagawa, M., Aihara, Y., Furuta, T., Wakimoto, T., Kan, T., and Nakayama, T. (2010) Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin. Bioorg. Med. Chem. 18, 4892-4896
Hatasa, Y., Chikazawa, M., Furuhashi, M., Nakashima, F., Shibata, T., Kondo, T., Akagawa, M., Hamagami, H., Tanaka, H., Tachibana, H., and Uchida, K. (2016) Oxidative deamination of serum albumins by (-)-epigallocatechin-3-O-gallate: A potential mechanism for the formation of innate antigens by antioxidants. PLoS One 11, 1-19
Furuhashi, M., Hatasa, Y., Kawamura, S., Shibata, T., Akagawa, M., and Uchida, K. (2017) Identification of polyphenol-specific innate epitopes that originated from a resveratrol analogue. Biochemistry 56, 4701-4712
Akagawa, M., Wako, Y., and Suyama, K. (1999) Lysyl oxidase coupled with catalase in egg shell membrane. Biochim. Biophys. Acta 1434, 151-160
Harris, E., Blount, J., and Leach, R. (1980) Localization of lysyl oxidase in hen oviduct: Implications in egg shell membrane formation and composition. Science 208, 55-56
Kijewska, M., Waliczek, M., Cal, M., Jaremko, Ł., Jaremko, M., Król, M., Kołodziej, M., Lisowski, M., Stefanowicz, P., and Szewczuk, Z. (2018) Solid-phase synthesis of peptides containing aminoadipic semialdehyde moiety and their cyclisations. Sci. Rep. 8, 10462
Charron, C. L., Cottam Jones, J. M., and Hutton, C. A. (2018) Are aminomethyl thioesters viable intermediates in native chemical ligation type amide bond forming reactions? Aust. J. Chem. 71, 697-701
Schmelzer, C. E. H., Hedtke, T., and Heinz, A. (2020) Unique molecular networks: Formation and role of elastin cross-links. IUBMB Life 72, 842-854
Suzuki, S., Sakurai, T., Itoh, S., and Ohshiro, Y. (1988) Preparation and characterization of ternary copper(II) complexes containing coenzyme PQQ and bipyridine or terpyridine. Inorg. Chem. 27, 591-592
Kaveri, S. V., Silverman, G. J., and Bayry, J. (2012) Natural IgM in immune equilibrium and harnessing their therapeutic potentialtle. J. Immunol. 188, 939-945
Grönwall, C., Vas, J., and Silverman, G. J. (2012) Protective roles of natural IgM antibodies. Front. Immunol. 3, 1-10
Lutz, H. U. (2007) Homeostatic roles of naturally occurring antibodies: An overview. J. Autoimmun. 29, 287-294
Binder, C. J., Papac-Milicevic, N., and Witztum, J. L. (2016) Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485-497