Article (Scientific journals)
Non-convexity of extremal length
SAGMAN, Nathaniel
2023In Annales Fennici Mathematici, 48 (2), p. 691-702
Peer Reviewed verified by ORBi
 

Files


Full Text
2303.04471.pdf
Author postprint (169.37 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
General Mathematics
Abstract :
[en] With respect to every Riemannian metric, the Teichmüller metric, and the Thurston metric on Teichmüller space, we show that there exist measured foliations on surfaces whose extremal length functions are not convex. The construction uses harmonic maps to \(\mathbb{R}\)-trees and minimal surfaces in \(\mathbb{R}^n\).
Disciplines :
Mathematics
Author, co-author :
SAGMAN, Nathaniel  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
no
Language :
English
Title :
Non-convexity of extremal length
Publication date :
01 November 2023
Journal title :
Annales Fennici Mathematici
ISSN :
2737-0690
eISSN :
2737-114X
Publisher :
Finnish Mathematical Society
Volume :
48
Issue :
2
Pages :
691-702
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBilu :
since 29 November 2023

Statistics


Number of views
77 (4 by Unilu)
Number of downloads
28 (1 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu