Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Evaluating Parameter-Efficient Finetuning Approaches for Pre-trained Models on the Financial Domain
OLARIU, Isabella; LOTHRITZ, Cedric; KLEIN, Jacques et al.
2023In Empirical Methods in Natural Language Processing
Peer reviewed
 

Files


Full Text
EMNLP_2023-1.pdf
Author postprint (171.84 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Disciplines :
Computer science
Author, co-author :
OLARIU, Isabella ;  University of Luxembourg
LOTHRITZ, Cedric  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Guo, Siwen;  Zortify S.A.
Haddadan, Shohreh;  Zortify S.A.
External co-authors :
no
Language :
English
Title :
Evaluating Parameter-Efficient Finetuning Approaches for Pre-trained Models on the Financial Domain
Publication date :
2023
Event name :
EMNLP 2023
Event date :
6-10 December, 2023
Main work title :
Empirical Methods in Natural Language Processing
Publisher :
Association for Computational Linguistics
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 27 November 2023

Statistics


Number of views
127 (9 by Unilu)
Number of downloads
90 (0 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
2

Bibliography


Similar publications



Contact ORBilu