Cost model; Enhanced Oil Recovery (EOR); Pipeline transport; Vessel transport; Cost modeling; Enhanced oil recovery; Graphical presentations; Intermediate storage; Transport infrastructure; West mediterraneans; Pollution; Energy (all); Management, Monitoring, Policy and Law; Industrial and Manufacturing Engineering; General Energy
Résumé :
[en] The application of CO2 capture and storage at industrial scales requires the development of a transport infrastructure which is suitable to transport millions of tons of CO2 per year. Important offshore storage sites could be served by pipelines or vessels. The discrimination between these options is a crucial scientific task for the assessment of the potential of CCS and the design of a CO2 transport infrastructure. In this research the analysis of vessel transport cost is refined by the optimization of vessel size in a fleet scheduling context. A cost model for a point-to-point CO2 transport by vessel that includes liquefaction, intermediate storage, loading, vessel/fleet construction and storage has been derived from a comprehensive literature survey and has been optimized for vessel capacity. The cost savings potential of the optimization can reach up to 40%. A reliable cost estimation should therefore carefully account for the dimensioning of the vessels. The optimized vessel transport option was then compared to pipeline transport connections to offshore storage sites. In a compact graphical presentation it is shown that vessel transport can be advantageous compared to pipeline transport for long distances and small volumes. The breakeven distance of vessel transport becomes up to 40% greater due to optimized vessel size. The cost models were then applied to find the cost effective transport mode for a connection of the West Mediterranean region1 The term “West Mediterranean” is used for the description of the region including Spain, Portugal and Morocco. Even though Portugal does not border the Mediterranean Sea, it is usually included in Mediterranean organizations. (i.e. Spain, Portugal, and Morocco) to a European CO2 transport infrastructure including the North Sea. Transport of CO2 by vessel turns out to be cost-effective and could be profitable if CO2 is used for Enhanced Oil Recovery (EOR).
Disciplines :
Domaines particuliers de l’économie (santé, travail, transport...)
Auteur, co-auteur :
GESKE, Joachim ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX ; Forschungszentrum Jülich – IEK-STE, Germany
Berghout, Niels ; Copernicus Institute, University Utrecht, Netherlands
van den Broek, Machteld; Copernicus Institute, University Utrecht, Netherlands
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Cost-effective balance between CO2 vessel and pipeline transport. Part I – Impact of optimally sized vessels and fleets
Aspelund, A., Molnvik, M.J., Koeijer, G.DE., Ship transport of CO2 – technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. Trans. IChemE Part A: Chem. Eng. Res. Des. 84:A9 (2006), 847–855, 10.1205/cherd.5147 SINTEF, STATOIL.
Aspelund, A., Gundersen, T., A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage – Part 3: The combined carrier and onshore storage. Appl. Energy 86 (2009), 805–814.
Barrio, M., Aspelund, A., Weydahl, T., Sandvik, T.E., Wongraven, L.R., Krogstad, H., Henningsen, R., Mølnvik, M., Eide, S.I., Ship-based transport of CO2. Rubin, E.S., Keith, D.W., Gilboy, C.F., Wilson, M., Morris, T., Gale, J., Thambimuthu, K., (eds.) Greenhouse Gas Control Technologies, vol. 7, 2005, Elsevier Science Ltd, Oxford, 1655–1660, 10.1016/B978-008044704-9/50193-2 ISBN 9780080447049.
Berger, B., Kaarstad, O., Haugen, H.A., Creating a large-scale CO2 infrastructure for enhanced oil recovery. International Conference on Greenhouse Gas Control Technologies (GHGT-7), Vancouver, Canada, 2004, Elsevier, Vancouver, Canada.
Berghout, N., Cabal, H., Gouveia J.P., Broek, M. van den, Faaij, A.P.C., forthcoming. Method for identifying drivers, barriers and synergies related to the deployment of a CO2 pipeline network – A case study for the Iberian Peninsula and Morocco. Utrecht University, Utrecht (the Netherlands).
Bjerkreim, B., Subsea gas compression – a future option. Offshore Technology Conference, 5/3/2004, Houston, TX, 2004, 10.4043/16561-MS ISBN 978-1-55563-251-9.
Boavida, D., Carneiro, J., Martinez, R., van den Broek, M., Ramirez, A., Rimi, A., Tosato, G., Gastine, M., Planning CCS development in the West Mediterranean. Energy Proc. 37 (2013), 3212–3220, 10.1016/j.egypro.2013.06.208 ISSN 1876-6102.
Chiyoda Corporation (Global CCS Institute), Preliminary Feasibility Study on CO2 Carrier for Ship-based CCS. 2011, 1–178.
[CO2] Europipe, Towards a Transport Infrastructure for Large-Scale CCS in Europe. 2011 Reports available at: http://www.co2europipe.eu/.
COCATE, Economic Assessment of CO2 Export Systems and Comparison of Implementation Strategies., 2011 Report of the Project “COCATE – Large-scale CCS Transportation infrastructure in Europe”, Deliverable No. D4.1.2. http://projet.ifpen.fr/Projet/jcms/xnt_12256/cocate-d412.
Coussy, P., Roussanaly, S., Bureau-Cauchois, G., Wildenborg, T., Economic CO2 network optimization model, COCATE European Project (2010–2013). Energy Proc. 37 (2013), 2923–2931.
Decarre, S., Berthiaud, J., Butin, N., Guillaume-Combecave, J.L., CO2 maritime transportation. Int. J. Greenhouse Gas Control 4:5 (2010), 857–864, 10.1016/j.ijggc.2010.05.005.
European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP), The Costs of CO2 Capture, Transport and Storage – Post-demonstration CCS in the EU. 2011, European Technology Platform for Zero Emission Fossil Fuel Power Plants, 1–51.
European Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP), The Costs of CO2 Transport – Post-Demonstration CCS in the EU. 2011, European Technology Platform for Zero Emission Fossil Fuel Power Plants, 1–53.
Eurostat, Code: ten00114, Electricity Prices for Industrial Consumers. 2012.
Farris, C.B., Unusual design factors for supercritical CO2 pipelines. Energy Prog. 3 (1983), 150–158.
Gao, L., Fang, M., LI, H., Hetland, J., Cost analysis of CO2 transportation: case study in China. Energy Proc. 4 (2011), 5974–5981, 10.1016/j.egypro.2011.02.600.
GCCSI, Economic Assessment of Carbon Capture and Storage Technologies. 2011 Update. 2011, Global CCS Institute, 1–57.
Geske, J., Berghout, N., van den Broek, M., Cost-effective balance between CO2 vessel and pipeline transport. Part II – design of multimodal CO2 transport. The case of the West Mediterranean region. Int. J. Greenhouse Gas Control 33 (2015), 122–134, 10.1016/j.ijggc.2014.12.005.
Haugen, H.A., Eldrup, N., Bernstone, C., Liljemark, S., Pettersson, H., Noer, M., Holland, J., Nilsson, P.A., Hegerland, G., Pande, J.O., Options for transporting CO2 from coal fired power plants Case Denmark. Energy Proc. 1 (2009), 1665–1672.
Heddle, G., Herzog, H., Klett, M., The Economics of CO2 Storage. 2003 MIT LFEE 2003-003 RP.
Hedne, P.E., Managing the risk of the unknowns: & Asgard Subsea Compression Qualification Program 2014. Offshore Technology Conference, 05–08 May, Houston, TX, 2014, 10.4043/25409-MS.
Hjelmeland, M., Olsen, A.B., Marjohan, R., Advances in subsea wet gas compression technologies. International Petroleum Technology Conference, 7–9.2.2012, Bangkok, Thailand, 2011.
Knoope, M.M.J., Ramírez, A., Faaij, A.P.C., A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport. Int. J. Greenhouse Gas Control 16 (2013), 241–270, 10.1016/j.ijggc.2013.01.005 ISSN 1750-5836. pii:S175058361300011X.
Knoope, M.M.J., Guijt, W., Ramírez, A., Faaij, A.P.C., Improved cost models for optimizing CO2 pipeline configuration for point-to-point pipelines and simple networks. Int. J. Greenhouse Gas Control 22 (2014), 25–46.
Kujanpää, L., Rauramo, J., Arasto, A., Cross-border CO2 infrastructure options for a CCS demonstration in Finland. Energy Proc. 4 (2011), 2425–3243, 10.1016/j.egypro.2011.02.136.
Metz, B., Davidson, O., Coninck, H.D., Loos, M., Meyer, L., Carbon Dioxide Capture and Storage: IPCC Special Report., 2005, Cambridge University Press, Cambridge Technical Summary. pp. 1–50 (Report 3) and pp. 179–194 (Chapter 4, Transport of CO2).
Middleton, R.S., Bielicki, J.M., A scalable infrastructure model for carbon capture and storage: Sim-CCS. Energy Policy 37 (2009), 1052–1060.
MHI – Mitsubishi Heavy Industries, Ship Transportation of CO2. IEA Report PH4-30, 2004, 1–115.
Mallon, W., Buit, L., van Wingerden, J., Lemmens, H., Eldrup, N.H., Costs of CO2 transportation infrastructures. Energy Proc. 37 (2013), 2969–2980.
Nilsson, P.A., CO2 shipping – do the numbers add up?. Carbon Capture J.(15), 2010, 25–27.
Ozaki, M., Ohsumi, T., Kajiyama, R., Ship-based offshore CCS featuring CO2 shuttle ships equipped with injection facilities. Energy Proc. 37 (2013), 3184–3190, 10.1016/j.egypro.2013.06.205 ISSN 1876-6102. pii:S1876610213004487.
Odenberger, M., Svensson, R., Transportation Systems for CO2 – Application to Carbon Sequestration. 2003, Department of Energy Conversion, Chalmers University of Technology Göteborg, Sweden.
Piessens, K., Laenen, B., Nijs, W., Mathieu, P., Baele, J.M., Policy Support System for Carbon Capture and Storage. SD/CP/04A. 2008, 1–269.
Roussanaly, S., Jakobsen, J.P., Hognes, E.H., Brunsvold, A.L., Benchmarking of CO2 transport technologies: Part I – Onshore pipeline and shipping between two onshore areas. Int. J. Greenhouse Gas Control 19 (2013), 584–594, 10.1016/j.ijggc.2013.05.031 ISSN 1750-5836. pii:S1750583613002478.
Roussanaly, S., Bureau-Cauchois, G., Husebye, J., Costs benchmark of CO2 transport technologies for a group of various size industries. Int. J. Greenhouse Gas Control 12C (2013), 341–350.
Roussanaly, S., Brunsvold, A.L., Hognes, E.H., Benchmarking of CO2 transport technologies: Part II – Offshore pipeline and shipping to an offshore site. Int. J. Greenhouse Gas Control 28 (2014), 283–299, 10.1016/j.ijggc.2014.06.019.
Sanders, M., Fuss, S., Engelen, P.J., Mobilizing private funds for carbon capture and storage: an exploratory field study in the Netherlands. Int. J. Greenhouse Gas Control 19:November (2013), 595–605, 10.1016/j.ijggc.2013.09.015.
Sarv, H., Large scale CO2 Transportation and Deep Ocean Sequestration. Phase I Final Report. 1999, McDermott Technology Corp., Inc, DE-AC26-98FT40412 Online document: http://www.osti.gov/bridge/servlets/purl/833297-ddMwv1/native/833297.pdf, Requested on 9th March 2015.
Svensson, R., Odenberger, M., Johnsson, F., Strömberg, L., Transportation systems for CO2 – application to carbon sequestration. Energy Convers. Manage. 45 (2004), 2343–2353, 10.1016/j.enconman.2003.11.022.
van den Broek, M., Ramírez, A., Groenenberg, H., Neele, F., Viebahn, P., Turkenburg, W., Faaij, A., Feasibility of storing CO2 in the Utsira formation as part of a long term Dutch CCS strategy: an evaluation based on a GIS/MARKAL toolbox. Int. J. Greenhouse Gas Control 4 (2010), 351–366, 10.1016/j.ijggc.2009.09.002 pii:S1750583609000905.
van den Broek, M., Brederode, E., Ramirez, A., Kramers, L., van der Kuip, M., Wildenborg, T., Turkenburg, W., Faaij, A., Designing a cost-effective CO2 storage infrastructure using GIS based linear optimization energy model. Environ. Model. Softw. 25 (2010), 1754–1768, 10.1016/j.envsoft.2010.06.015.
van den Broek, M., Boavida, D., Cabal, H., Carneiro, J., Fortes, P., Gouveia, J.P., Labriet, M., Lechón, Y., Martinez, R., Mesquita, P., Rimi, A., Seixas, J., Tosasto, G.C., Zarhoule, Y., Report with Selection of Most Promising CCS Infrastructure Options. COMET Technical Note 6.4, 2013.
Yoo, B.Y., Choi, D.K., Kim, H.J., Moon, Y.S., Na, H.S., Lee, S.G., Development of CO2 terminal and CO2 carrier for future commercialized CCS market. Int. J. Greenhouse Gas Control 12 (2013), 323–332, 10.1016/j.ijggc.2012.11.008 ISSN 1750-5836.