Central limit theorem; Dyson’s brownian motion; Matrix-valued ornstein-uhlenbeck process; Particle system; Squared bessel particle system; Wishart process; Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] We consider a class of particle systems that generalizes the eigenvalues of a class of matrix-valued processes, of which the empirical measures converge to deterministic measures as the dimension goes to infinity. In this paper, we obtain central limit theorems (CLTs) to characterize the fluctuations of the empirical measures around the limit measures by using stochastic calculus. As applications, CLTs for Dyson’s Brownian motion and the eigenvalues of Wishart process are recovered under slightly more general initial conditions, and a CLT for the eigenvalues of a symmetric matrixvalued Ornstein-Uhlenbeck process is obtained.
Disciplines :
Mathematics
Author, co-author :
Song, Jian; Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China ; School of Mathematics, Shandong University, Jinan, China
Yao, Jianfeng; Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong
YUAN, Wangjun ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Mathematics, The University of Hong Kong, Hong Kong
External co-authors :
yes
Language :
English
Title :
High-dimensional central limit theorems for a class of particle systems*
Publication date :
2021
Journal title :
Electronic Journal of Probability
eISSN :
1083-6489
Publisher :
Institute of Mathematical Statistics
Volume :
26
Issue :
none
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
*J. Song is supported by Shandong University grant 11140089963041 and National Natural Science Foundation of China grant 12071256. J. Yao is supported by HKSAR-RGC-Grant GRF-17307319. †Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shan-dong, 266237, China and School of Mathematics, Shandong University, Jinan, Shandong, 250100, China.
Anderson, G. W., Guionnet, A., and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge University Press, Cambridge New York. MR-2760897
Bru, M.-F. (1991). Wishart processes. J. Theor. Probab, 4(4):725–751. MR-1132135
Cabanal-Duvillard, T. (2001). Fluctuations de la loi empirique de grandes matrices aléatoires. Ann. Inst. H. Poincaré Probab. Statist., 37(3):373–402. MR-1831988
Cabanal-Duvillard, T. and Guionnet, A. (2001). Large deviations upper bounds for the laws of matrix-valued processes and non-communicative entropies. Ann. Probab., 29(3):1205–1261. MR-1872742
Cépa, E. and Lépingle, D. (1997). Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields, 107(4):429–449. MR-1440140
Chan, T. (1992). The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields, 93(2):249–272. MR-1176727
Dyson, F. J. (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Mathematical Phys., 3:1191–1198. MR-0148397
Fontbona, J. (2004). Uniqueness for a weak nonlinear evolution equation and large deviations for diffusing particles with electrostatic repulsion. Stochastic Process. Appl., 112(1):119–144. MR-2062570
Geiß, C. and Manthey, R. (1994). Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stochastic Process. Appl., 53(1):23–35. MR-1290705
Graczyk, P. and Małecki, J. (2013). Multidimensional Yamada-Watanabe theorem and its applications to particle systems. J. Math. Phys., 54(2):021503, 15. MR-3076363
Graczyk, P. and Małecki, J. (2014). Strong solutions of non-colliding particle systems. Electron. J. Probab., 19:no. 119, 21. MR-3296535
Graczyk, P. and Małecki, J. (2019). On squared Bessel particle systems. Bernoulli, 25(2):828–847. MR-3920358
Hiai, F. and Petz, D. (2000). The semicircle law, free random variables and entropy, volume 77 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. MR-1746976
Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition. MR-1121940
Li, S., Li, X.-D., and Xie, Y.-X. (2020). On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion. J. Stat. Phys., 181(4):1277–1305. MR-4163502
Małecki, J. and Pérez, J. L. (2019). Universality classes for general random matrix flows. arXiv e-prints, page arXiv:1901.02841.
Mingo, J. A. and Speicher, R. (2017). Free probability and random matrices, volume 35 of Fields Institute Monographs. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON. MR-3585560
Pérez-Abreu, V. and Tudor, C. (2007). Functional limit theorems for trace processes in a Dyson Brownian motion. Commun. Stoch. Anal., 1(3):415–428. MR-2403859
Perez-Abreu, V. and Tudor, C. (2009). On the traces of Laguerre processes. Electron. J. Probab., 14:no. 76, 2241–2263. MR-2550298
Rogers, L. C. G. and Shi, Z. (1993). Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields, 95(4):555–570. MR-1217451
Rudin, W. (1991). Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition. MR-1157815
Song, J., Yao, J., and Yuan, W. (2020). High-dimensional limits of eigenvalue distributions for general Wishart process. Ann. Appl. Probab., 30(4):1642–1668. MR-4132637
Voiculescu, D. (1991). Limit laws for random matrices and free products. Invent. Math., 104(1):201– 220. MR-1094052
Voiculescu, D. V., Dykema, K. J., and Nica, A. (1992). Free random variables, volume 1 of CRM Monograph Series. American Mathematical Society, Providence, RI. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR-1217253