Dyson Brownian motion; Eigenvalue distribution; Generalized Wishart process; High-dimensional limit; Squared Bessel particle system; Wishart process; Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] In this article, we obtain an equation for the high-dimensional limit measure of eigenvalues of generalized Wishart processes, and the results are extended to random particle systems that generalize SDEs of eigenvalues. We also introduce a new set of conditions on the coefficient matrices for the existence and uniqueness of a strong solution for the SDEs of eigenvalues. The equation of the limit measure is further discussed assuming self-similarity on the eigenvalues.
Disciplines :
Mathematics
Author, co-author :
Song, Jian; School of Mathematics, Shandong University, China
Yao, Jianfeng; Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong
YUAN, Wangjun ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Mathematics, University of Hong Kong, Hong Kong
External co-authors :
yes
Language :
English
Title :
High-dimensional limits of eigenvalue distributions for general wishart process
ANDERSON, G. W., GUIONNET, A. and ZEITOUNI, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge. MR2760897
BAI, Z. and SILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. Springer Series in Statistics. Springer, New York. MR2567175 https://doi.org/10.1007/978-1-4419-0661-8
BRU, M.-F. (1989). Diffusions of perturbed principal component analysis. J. Multivariate Anal. 29 127-136. MR0991060 https://doi.org/10.1016/0047-259X(89)90080-8
CABANAL-DUVILLARD, T. and GUIONNET, A. (2001). Large deviations upper bounds for the laws of matrix-valued processes and non-communicative entropies. Ann. Probab. 29 1205-1261. MR1872742 https://doi.org/10.1214/aop/1015345602
CÉPA, E. and LÉPINGLE, D. (1997). Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 429-449. MR1440140 https://doi.org/10.1007/s004400050092
CHAN, T. (1992). The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields 93 249-272. MR1176727 https://doi.org/10.1007/BF01195231
DA FONSECA, J., GRASSELLI, M. and IELPO, F. (2014). Estimating the Wishart affine stochastic correlation model using the empirical characteristic function. Stud. Nonlinear Dyn. Econom. 18 253-289. MR3258801 https://doi.org/10.1515/snde-2012-0009
DA FONSECA, J., GRASSELLI, M. and TEBALDI, C. (2008). Option pricing when correlations are stochastic: An analytical framework. Rev. Deriv. Res. 10 151-180.
DEMNI, N. (2007). The Laguerre process and generalized Hartman-Watson law. Bernoulli 13 556-580. MR2331264 https://doi.org/10.3150/07-BEJ6048
DYSON, F. J. (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. MR0148397 https://doi.org/10.1063/1.1703862
GNOATTO, A. (2012). The Wishart short rate model. Int. J. Theor. Appl. Finance 15 1250056, 24. MR3011743 https://doi.org/10.1142/S0219024912500562
GNOATTO, A. and GRASSELLI, M. (2014). An affine multicurrency model with stochastic volatility and stochastic interest rates. SIAM J. Financial Math. 5 493-531. MR3252805 https://doi.org/10.1137/130922902
GÖING-JAESCHKE, A. and YOR, M. (2003). A survey and some generalizations of Bessel processes. Bernoulli 9 313-349. MR1997032 https://doi.org/10.3150/bj/1068128980
GOURIEROUX, C. (2006). Continuous time Wishart process for stochastic risk. Econometric Rev. 25 177-217. MR2256286 https://doi.org/10.1080/07474930600713234
GOURIEROUX, C. and SUFANA, R. (2010). Derivative pricing with Wishart multivariate stochastic volatility. J. Bus. Econom. Statist. 28 438-451. MR2723611 https://doi.org/10.1198/jbes.2009.08105
GRACZYK, P. and MAŁECKI, J. (2013). Multidimensional Yamada-Watanabe theorem and its applications to particle systems. J. Math. Phys. 54 021503, 15. MR3076363 https://doi.org/10.1063/1.4790507
GRACZYK, P. and MAŁECKI, J. (2014). Strong solutions of non-colliding particle systems. Electron. J. Probab. 19 no. 119, 21. MR3296535 https://doi.org/10.1214/EJP.v19-3842
KATORI, M. (2016). Bessel Processes, Schramm-Loewner Evolution, and the Dyson Model. SpringerBriefs in Mathematical Physics 11. Springer, Tokyo. MR3445783
KONDOR, R. and JEBARA, T. (2007). Gaussian and Wishart hyperkernels. In Advances in Neural Information Processing Systems 729-736.
KÖNIG, W. and O'CONNELL, N. (2001). Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. Electron. Commun. Probab. 6 107-114. MR1871699 https://doi.org/10.1214/ECP.v6-1040
KRYLOV, N. V. and RÖCKNER, M. (2005). Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields 131 154-196. MR2117951 https://doi.org/10.1007/s00440-004-0361-z
LI, W.-J., ZHANG, Z. and YEUNG, D.-Y. (2009). Latent Wishart processes for relational kernel learning. J. Mach. Learn. Res. 5 336-343.
LI, J., ZHAO, B., DENG, C. and XU, R. (2016). Time varying metric learning for visual tracking. Pattern Recogn. Lett. 80 157-164.
ROGERS, L. C. G. and SHI, Z. (1993). Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 555-570. MR1217451 https://doi.org/10.1007/BF01196734
SCHÖLKOPF, B. and SMOLA, A. J. (2002). Learning with Kernels. MIT Press, Cambridge.
STEIN, E. M. and SHAKARCHI, R. (2011). Functional Analysis: Introduction to Further Topics in Analysis. Princeton Lectures in Analysis 4. Princeton Univ. Press, Princeton, NJ. MR2827930
WU, S.-J., GHOSH, S. K., KU, Y.-C. and BLOOMFIELD, P. (2018). Dynamic correlation multivariate stochastic volatility with latent factors. Stat. Neerl. 72 48-69. MR3746787 https://doi.org/10.1111/stan.12115
ZAMBOTTI, L. (2017). Bessel processes. In Random Obstacle Problems. Lecture Notes in Math. 2181 31-50. Springer, Cham. MR3616274 https://doi.org/10.1007/978-3-319-52096-4
ZHANG, Z., KWOK, J. and YEUNG, D.-Y. (2006). Model-based transductive learning of the kernel matrix. Mach. Learn. 63 69-101.