central limit theorem; directed polymer in random environment; Edwards-Wilkinson fluctuations; KPZ equation; polynomial chaos; stochastic heat equation; Wiener chaos; Statistics and Probability; Statistics, Probability and Uncertainty
Résumé :
[en] We present a simple criterion, only based on second moment assumptions, for the convergence of polynomial or Wiener chaos to a Gaussian limit. We exploit this criterion to obtain new Gaussian asymptotics for the partition functions of two-dimensional directed polymers in the sub-critical regime, including a singular product between the partition function and the disorder. These results can also be applied to the KPZ and Stochastic Heat Equation. As a tool of independent interest, we derive an explicit chaos expansion which sharply approximates the logarithm of the partition function.
Disciplines :
Mathématiques
Auteur, co-auteur :
Caravenna, Francesco; Università degli Studi di Milano, Bicocca, Italy
COTTINI, Francesca ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Università degli Studi di Milano, Bicocca, Italy
[BC98] L. Bertini and N. Cancrini. The two-dimensional stochastic heat equation: renormalizing a multiplicative noise. J. Phys. A: Math. Gen. 31 (1998), 615–622. MR1629198
[Bil95] P. Billingsley. Probability and Measure. Third Edition (1995), John Wiley and Sons. MR1324786
[CSZ17a] F. Caravenna, R. Sun, N. Zygouras. Polynomial chaos and scaling limits of disordered systems. J. Eur. Math. Soc. 19 (2017), 1–65. MR3584558
[CSZ17b] F. Caravenna, R. Sun, N. Zygouras. Universality in marginally relevant disordered systems. Ann. Appl. Probab. 27 (2017), 3050–3112. MR3719953
[CSZ19b] F. Caravenna, R. Sun, N. Zygouras. On the moments of the (2+1)-dimensional directed polymer and stochastic heat equation in the critical window. Commun. Math. Phys. 372 (2019), 385–440. MR4032870
[CSZ20] F. Caravenna, R. Sun, N. Zygouras. The two-dimensional KPZ equation in the entire subcritical regime. Ann. Probab. 48 (2020), 1086–1127. MR4112709
[CSZ21+] F. Caravenna, R. Sun, N. Zygouras. The Critical 2d Stochastic Heat Flow. arXiv:2109.03766 (2021). MR4017119
[Com17] F. Comets. Directed Polymers in Random Environments. Lecture Notes in Mathematics, 2175. Springer, Cham, 2017. MR3444835
[CD20] S. Chatterjee, A. Dunlap. Constructing a solution of the (2+1)-dimensional KPZ equation. Ann. Probab. 48 (2020), 1014–1055. MR4089501
[CCM20] F. Comets, C. Cosco, C. Mukherjee. Renormalizing the Kardar-Parisi-Zhang equation in d ě 3 in weak disorder. J. Stat. Phys. 179 (2020) 713–728. MR4099995
[CCM21+] F. Comets, C. Cosco, C. Mukherjee. Space-time fluctuation of the Kardar-Parisi-Zhang equation in d ě 3 and the Gaussian free field. arXiv:1905.03200 (2021). MR4262971
[CNN20+] C. Cosco, S. Nakajima, M. Nakashima. Law of large numbers and fluctuations in the sub-critical and L2 regions for SHE and KPZ equation in dimension d ě 3. arXiv:2005.12689 (2020).
[CZ21+] C. Cosco, O. Zeitouni. Moments of partition functions of 2D Gaussian polymers in the weak disorder regime. arXiv:2112.03767 (2021).
[Cot23] F. Cottini. Ph.D. Thesis. In preparation (2023).
[DG20+] A. Dunlap, Y. Gu. A forward-backward SDE from the 2D nonlinear stochastic heat equation. arXiv:2010.03541 (2020). MR4413215
[DGRZ20] A. Dunlap, Y. Gu, L. Ryzhik, O. Zeitouni. Fluctuations of the solutions to the KPZ equation in dimensions three and higher. Probab. Theory Relat. Fields 176 (2020), 1217–1258. MR4087492
[deJ87] P. de Jong. A central limit theorem for generalized quadratic forms. Probab. Theory Relat. Fields 75 (1987), 261–277. MR0885466
[deJ90] P. de Jong. A central limit theorem for generalized multilinear forms. J. Multivariate Anal. 34 (1990), 275–289. MR1073110
[G20] Y. Gu. Gaussian fluctuations from the 2D KPZ equation. Stoch. Partial Differ. Equ. Anal. Comput. 8 (2020), 150–185. MR4058958
[GQT21] Y. Gu, J. Quastel, L.-C. Tsai. Moments of the 2D SHE at criticality. Prob. Math. Phys. 2 (2021), 179–219. MR4404819
[GRZ18] Y. Gu, L. Ryzhik, O. Zeitouni. The Edwards-Wilkinson limit of the random heat equation in dimensions three and higher. Comm. Math. Phys. (2018) 363 (2), 351– 388. MR3851818
[Ito51] K. Ito. Multiple Wiener Integral. J. Math. Society of Japan, Vol. 3 (1951), N. 1, 157–169. MR0044064
[Jan97] S. Janson. Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, Vol. 129. Cambridge University Press, Cambridge (1997). MR1474726
[LL10] G.F. Lawler, V. Limic. Random walk: a modern introduction. Cambridge University Press (2010). MR2677157
[LZ20+] D. Lygkonis, N. Zygouras. Edwards-Wilkinson fluctuations for the directed polymer in the full L2-regime for dimensions d ě 3. arXiv:2005.12706 (2020), Ann. Inst. H. Poincaré Probab. Statist. (to appear). MR4374673
[LZ21+] D. Lygkonis, N. Zygouras. Moments of the 2d directed polymer in the subcritical regime and a generalisation of the Erdös-Taylor theorem. arXiv:2109.06115 (2021).
[MU18] J. Magnen, J. Unterberger. The scaling limit of the KPZ equation in space dimension 3 and higher. J. Stat. Phys. 171 (2018), Volume 171, 543–598. MR3790153
[MOO10] E. Mossel, R. O’Donnell, K. Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. Ann. Math 171 (2010), 295–341. MR2630040
[NN21+] S. Nakajima, M. Nakashima. Fluctuations of two-dimensional stochastic heat equation and KPZ equation in subcritical regime for general initial conditions. arXiv:2103.07243 (2021).
[NuaPec05] D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005), 177–193. MR2118863
[NouPec12] I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge University Press (2012). MR2962301
[NPR10] I. Nourdin, G. Peccati, G. Reinert. Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos. Ann. Probab. 38 (2010), 1947–1985. MR2722791
[Rot79] V.I. Rotar’. Limit theorems for polylinear forms. J. Multivariate Anal. 9 (1979), 511– 530. MR0556909