Discrete Laplacians; Evolution equations in random environments; Operator semigroups; Quantum graphs; Asymptotic behavior of solutions; Combinatorial graphs; Difference operators; Differential operators; Diffusion-type equations; Evolution equations; Steady state; Wellposedness; Control and Optimization; Applied Mathematics
Abstract :
[en] We study diffusion-type equations supported on structures that are randomly varying in time. After settling the issue of well-posedness, we focus on the asymptotic behavior of solutions: our main result gives sufficient conditions for pathwise convergence in norm of the (random) propagator towards a (deterministic) steady state. We apply our findings in two environments with randomly evolving features: ensembles of difference operators on combinatorial graphs, or else of differential operators on metric graphs.
Disciplines :
Mathematics
Author, co-author :
Bonaccorsi, Stefano ; Dipartimento di Matematica, Università di Trento, Povo, Italy
COTTINI, Francesca ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Milan, Italy
Mugnolo, Delio; Lehrgebiet Analysis, Fakultät Mathematik und Informatik, FernUniversität in Hagen, Hagen, Germany
External co-authors :
yes
Language :
English
Title :
Random Evolution Equations: Well-Posedness, Asymptotics, and Applications to Graphs
The third author was partially supported by the Deutsche Forschungsgemeinschaft (Grant 397230547).Open access funding provided by Universitá degli Studi di Trento within the CRUI-CARE Agreement.
Acosta, María D.: Denseness of norm attaining mappings. RACSAM 100(1–2), 9–30 (2006)
Arendt, W., Dier, D., Kramar Fijavž, M.: Diffusion in networks with time-dependent transmission conditions. Appl. Math. Optim. 69, 315–336 (2014) DOI: 10.1007/s00245-013-9225-1
Acquistapace, P., Terreni, B.: A unified approach to abstract linear nonautonomous parabolic equations. Rendiconti del seminario matematico della Università di Padova 78, 47–107 (1987)
Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)
Bakhtin, Yuri, Hurth, Tobias: Invariant densities for dynamical systems with random switching. Nonlinearity 25(10), 2937–2952 (2012) DOI: 10.1088/0951-7715/25/10/2937
Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186. American Mathematical Society, Providence, RI (2013)
Benaïm, M., Le Borgne, S., Malrieu, F., Zitt, P.-A.: Quantitative ergodicity for some switched dynamical systems. Electron. Commun. Probab. 17(56), 14 (2012)
Benaïm, M., Le Borgne, S., Malrieu, F., Zitt, P.-A.: On the stability of planar randomly switched systems. Ann. Appl. Probab. 24(1), 292–311 (2014) DOI: 10.1214/13-AAP924
Buceta, J., Lindenberg, Katja., Parrondo, J. M. R.: Global alternation-induced patterns. Fluct. Noise Lett., 2(4):R139–R159, (2002). Game theory and evolutionary processes: order from disorder—the role of noise in creative processes
Bressloff, P.C.: Stochastic switching in biology: from genotype to phenotype. J. Phys. A 50, 136 (2017)
Cloez, B., Hairer, M.: Exponential ergodicity for Markov processes with random switching. Bernoulli 21(1), 505–536 (2015) DOI: 10.3150/13-BEJ577
Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Series B 46, 353–376 (1984)
Daners, D., Glück, J., Kennedy, J.B.: Eventually positive semigroups of linear operators. J. Math. Anal. Appl. 433, 1561–1593 (2016) DOI: 10.1016/j.jmaa.2015.08.050
Daubechies, I., Lagarias, J.C.: Sets of matrices all infinite products of which converge. Linear Algebra Appl. 161, 227–263 (1992) DOI: 10.1016/0024-3795(92)90012-Y
Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992)
Daubechies, I., Lagarias, J.C.: Corrigendum/addendum to: sets of matrices all infinite products of which converge. Linear Algebra Appl. 327, 69–83 (2001) DOI: 10.1016/S0024-3795(00)00314-1
Elsner, L., Koltracht, I., Neumann, M.: On the convergence of asynchronous paracontractions with application to tomographic reconstruction from incomplete data. Linear Algebra Appl. 130, 65–82 (1990) DOI: 10.1016/0024-3795(90)90206-R
Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)
Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23, 298–305 (1973) DOI: 10.21136/CMJ.1973.101168
Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960) DOI: 10.1214/aoms/1177705909
Friedlander, L.: Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier 55, 199–212 (2005) DOI: 10.5802/aif.2095
Gurvits, Leonid: Stability of discrete linear inclusion. Linear Algebra Appl. 231, 47–85 (1995) DOI: 10.1016/0024-3795(95)90006-3
Hussein, A., Mugnolo, D.: If time were a graph, what would evolution equations look like? arXiv:2001.06868
Kennedy, J.B., Kurasov, P., Malenová, G., Mugnolo, D.: On the spectral gap of a quantum graph. Ann. Henri Poincaré 17, 2439–2473 (2016) DOI: 10.1007/s00023-016-0460-2
Kramar Fijavž, M., Mugnolo, D., Sikolya, E.: Variational and semigroup methods for waves and diffusion in networks. Appl. Math. Optim. 55, 219–240 (2007) DOI: 10.1007/s00245-006-0887-9
Korolyuk, V., Swishchuk, A.: Semi-Markov random evolutions, volume 308 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1995. Translated from the (1992)Russian original by V. Zayats and revised by the authors
Lawley, S.D.: Blowup from randomly switching between stable boundary conditions for the heat equation. Commun. Math. Sci. 16(4), 1133–1156 (2018) DOI: 10.4310/CMS.2018.v16.n4.a9
Levy, Paul.: Processus semi-markoviens. In: Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 416–426. Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam (1956)
Malrieu, F.: Some simple but challenging Markov processes. Ann. Fac. Sci. Toulouse Math. 24(4), 857–883 (2015) DOI: 10.5802/afst.1468
Mugnolo, D.: What is actually a metric graph? arXiv:1912.07549
Mugnolo, D.: Semigroup Methods for Evolution Equations on Networks. Complex Systems are Systems. Springer, Berlin (2014) DOI: 10.1007/978-3-319-04621-1
Nicaise, S.: Spectre des réseaux topologiques finis. Bull. Sci. Math., II. Sér. 111, 401–413 (1987)
Pyke, R., Schaufele, R.: Limit theorems for Markov renewal processes. Ann. Math. Stat. 35, 1746–1764 (1964) DOI: 10.1214/aoms/1177700397
Pyke, R.: Markov renewal processes with finitely many states. Ann. Math. Stat. 32, 1243–1259 (1961) DOI: 10.1214/aoms/1177704864
Schmüdgen, K.: Unbounded Self-adjoint Operators on Hilbert Space. Graduate Texts in Mathematics, vol. 265. Springer, Berlin (2012) DOI: 10.1007/978-94-007-4753-1
Smith, W.L.: Regenerative stochastic processes. Proc. R. Soc. Lond. Ser. A 232, 6–31 (1955) DOI: 10.1098/rspa.1955.0198
Tanabe, H.: Equations of Evolution. Monographs and Studies in Mathematics, vol. 6. Pitman, Boston (1979)
George Yin, G., Zhu, Chao.: Hybrid switching diffusions, volume 63 of Stochastic Modelling and Applied Probability. Springer, New York, (2010). Properties and applications
Zeitouni, O.: Random walks in random environments. In: Proceeding of the International Congress of Mathematicians (Beijing 2002), volume 3, pp. 117–127, Beijing, (2002). Higher Ed. Press
Zeitouni, O.: Random walks in random environment. In: S. Tavaré and O. Zeitouni, editors, Lectures on Probability Theory and Statistics, volume 1837 of Lect. Notes Math., pp. 190–312. Springer, Berlin (2004)