Article (Périodiques scientifiques)
Leveraging the edge and cloud for V2X-based real-time object detection in autonomous driving
HAWLADER, Faisal; ROBINET, François; FRANK, Raphaël
2023In Computer Communications, 213, p. 372-381
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Comcom_Main.pdf
Postprint Auteur (1.31 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
V2X; Object detection; Latency optimization; Edge computing; Cloud computing
Résumé :
[en] Environmental perception is a key element of autonomous driving because the information received from the perception module influences core driving decisions. An outstanding challenge in real-time perception for autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints on both computation and power must be taken into account for real-time perception in autonomous vehicles. Larger detection models tend to produce the best results but are also slower at runtime. Since the most accurate detectors may not run in real-time locally, we investigate the possibility of offloading computation to edge and cloud platforms, which are less resource-constrained. We create a synthetic dataset to train object detection models and evaluate different offloading strategies. We measure inference and processing times for object detection on real hardware, and we rely on a network simulation framework to estimate data transmission latency. Our study compares different trade-offs between prediction quality and end-to-end delay. Following the existing literature, we aim to perform object detection at a rate of 20Hz. Since sending raw frames over the network implies additional transmission delays, we also explore the use of JPEG and H.265 compression at varying qualities and measure their impact on prediction. We show that models with adequate compression can be run in real-time on the edge/cloud while outperforming local detection performance.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Other
Précision sur le type de document :
Compte rendu
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HAWLADER, Faisal  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Ubiquitous and Intelligent Systems (UBI-X)
ROBINET, François ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust > Ubiquitous and Intelligent Systems > Team Raphaël FRANK
FRANK, Raphaël ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Ubiquitous and Intelligent Systems (UBI-X)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Leveraging the edge and cloud for V2X-based real-time object detection in autonomous driving
Date de publication/diffusion :
25 novembre 2023
Titre du périodique :
Computer Communications
ISSN :
0140-3664
Maison d'édition :
Elsevier BV
Volume/Tome :
213
Pagination :
372-381
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR17020780 - Infrastructure Assisted Cooperative Driving Strategy For Connected Vehicles (Acdc), 2022 (15/03/2022-14/03/2025) - Faisal Hawlader
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 27 novembre 2023

Statistiques


Nombre de vues
204 (dont 18 Unilu)
Nombre de téléchargements
105 (dont 6 Unilu)

citations Scopus®
 
23
citations Scopus®
sans auto-citations
21
citations OpenAlex
 
18

Bibliographie


Publications similaires



Contacter ORBilu