Article (Périodiques scientifiques)
MLOps in freight rail operations
Juan Pineda-Jaramillo; VITI, Francesco
2023In Engineering Applications of Artificial Intelligence, 123, p. 106222
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S0952197623004062-main.pdf
Postprint Auteur (1.98 MB) Licence Creative Commons - Attribution
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Apache airflow; CI/CD/CT; Freight rail operations; Machine learning; ML deployment; MLOps; Delay Time; Freight rail operation; Machine-learning; MLOp; Rail operations; Real- time; Work-flows; Control and Systems Engineering; Artificial Intelligence; Electrical and Electronic Engineering; CI; CD; CT
Résumé :
[en] Railways are essential for freight transport due to their operational reliability advantages, but maintaining this advantage requires optimised railway infrastructure. Previous research has developed models to predict freight rail disruptions/disturbances and their associated delay times, in order to better understand the impact of multiple factors on them. However, because these models are built on static datasets, extracting real value from a model in a production environment remains difficult. This paper presents a methodology that demonstrates the potential of MLOps in automating the entire workflow, from data extraction to model deployment for real-time delay predictions in freight rail operations, including good practices of Continuous-Integration, Continuous-Delivery, and Continuous-Training, as well as a tool list for each process. Our research advances the field of railway operations by developing an entire MLOps workflow using data from the freight rail operations of the Luxembourgish National Freight Railway Company over a seventeen-month period. Furthermore, we employed a LightGBM model that had previously performed well in another study. This workflow can be automatically triggered to develop the processes and thus maintain an ML model capable of predicting delay times for CFL Multimodal operations in real-time. Our findings demonstrate that MLOps have the potential to automate the entire process, opening up new avenues for future research in this field. Although the methodology presented is intended to optimise freight rail operations for a specific company, it can be easily transferable to other railway companies or other transportation industries, such as aviation, shipping, and trucking.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Juan Pineda-Jaramillo ;  Department of Engineering, University of Luxembourg, Luxembourg
VITI, Francesco  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
MLOps in freight rail operations
Date de publication/diffusion :
août 2023
Titre du périodique :
Engineering Applications of Artificial Intelligence
ISSN :
0952-1976
Maison d'édition :
Elsevier Ltd
Volume/Tome :
123
Pagination :
106222
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet FnR :
R-AGR-3881 - BRIDGES 2020/14767177-ANTOINE/CFL Cont (01/01/2021 - 31/12/2023) - CONNORS Richard
Intitulé du projet de recherche :
R-AGR-3881 - BRIDGES 2020/14767177-ANTOINE/CFL Cont (01/01/2021 - 31/12/2023) - CONNORS Richard
Organisme subsidiant :
FNR - Luxembourg National Research Fund
N° du Fonds :
14767177
Subventionnement (détails) :
This study was possible thanks to the collaboration agreement signed between the University of Luxembourg and CFL Multimodal, and funding obtained by the Luxembourg National Research Fund FNR, through the project “ANticipatory Train Optimisation with Intelligent maNagEment (ANTOINE)”, under grant BRIDGES2020/MS/14767177/ANTOINE. Special thanks to Nathalie Stef and Michael Maraldi from CFL for sharing the data used in this study.This study was possible thanks to the collaboration agreement signed between the University of Luxembourg and CFL Multimodal, and funding obtained by the Luxembourg National Research Fund FNR , through the project “ANticipatory Train Optimisation with Intelligent maNagEment (ANTOINE)”, under grant BRIDGES2020/MS/14767177/ANTOINE . Special thanks to Nathalie Stef and Michael Maraldi from CFL for sharing the data used in this study.
Disponible sur ORBilu :
depuis le 26 novembre 2023

Statistiques


Nombre de vues
108 (dont 1 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
10
citations OpenAlex
 
10
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu