Asymmetry models; Local asymptotic normality; Location tests; Rank-based inference; Tests of symmetry; Statistics and Probability; Statistics, Probability and Uncertainty
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Universit́ Libre de Bruxelles, E.C.A.R.E.S., Institut de Recherche en Statistique, D́partement de Math́matique, Brussels, Belgium
Paindaveine, Davy; Universit́ Libre de Bruxelles, E.C.A.R.E.S., Institut de Recherche en Statistique, D́partement de Math́matique, Brussels, Belgium
External co-authors :
yes
Language :
English
Title :
Le Cam optimal tests for symmetry against Ferreira and Steel's general skewed distributions
Christophe Ley thanks the Fonds National de la Recherche Scientifique, Communauté française de Belgique, for support via a Mandat d’Aspirant FNRS. Davy Paindaveine is grateful to the Fonds National de la Recherche Scientifique, Communauté française de Belgique, for a Mandat d’Impulsion Scientifique. The authors would like to thank the editor, the associate editor, and an anonymous referee for their valuable comments that helped them improve significantly the quality of the paper. Davy Paindaveine is a member of ECORE, the recently created association between CORE and ECARES.
R. Beran, Asymptotically efficient adaptive rank estimates in location models, Ann. Statist. 2 (1974), pp. 63-74.
C. Stein, Efficient nonparametric testing and estimation, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1956, pp. 187-195, Univ. California Press, Berkley.
C. Stone, Adaptive maximum likelihood estimation of a location parameter, Ann. Statist. 3 (1975), pp. 267-284.
C.C. Butler, A test for symmetry using the sample distribution function,Ann. Math. Statist. 40 (1969), pp. 2209-2210.
D.L. Hill and P.V. Rao, Tests of symmetry based on Cramér-von Mises statistics, Biometrika 64 (1977), pp. 489-494.
T.P. McWilliams, A distribution-free test for symmetry based on a runs statistic, J. Amer. Statist. Assoc. 85 (1990), pp. 1130-1133.
R. Modarres and J.L. Gastwirth, A modified runs test for symmetry, Statist. Probab. Lett. 31 (1996), pp. 107-112.
E.D. Rothman and M. Woodrofe, A Cramér-von Mises type statistic for testing symmetry, Ann. Math. Statist. 43 (1972), pp. 2035-2038.
D. Cassart, M. Hallin, and D. Paindaveine, Optimal detection of Fechner-asymmetry, J. Statist. Plann. Inference 138 (2008), pp. 2499-2525.
D. Cassart, M. Hallin, and D. Paindaveine, A class of optimal tests for symmetry based on Edgeworth approximations, submitted for publication.
T.J. Kozubowski and A.K. Panorska, Testing symmetry under a skew Laplace model, J. Statist. Plann. Inference 120 (2004), pp. 41-63.
J.T.A.S. Ferreira and M.F.J. Steel, A constructive representation of univariate skewed distributions, J. Amer. Statist. Assoc. 101 (2006), pp. 823-829.
A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171-178.
C. Fernández and M.F.J. Steel, On Bayesian modeling of fat tails and skewness, J. Amer. Statist. Assoc. 93 (1998), pp. 359-371.
L. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, NewYork, 1986.
M.L. Puri and P.K. Sen, Nonparametric Methods in General Linear Models, Wiley, NewYork, 1985.
J. Hájek, Z. Sidák, and P.K. Sen, Theory of Rank Tests, Academic Press, San Diego, CA, 1999.
J.W. Pratt and J.D. Gibbons, Concepts of Nonparametric Theory, Springer-Verlag, NewYork, 1981.
R.H. Randles and D.A. Wolfe, Introduction to the Theory of Nonparametric Statistics, Wiley, NewYork, 1979.
N. Henze, On the consistency of a test for symmetry based on a runs statistic, J. Nonparametr. Stat. 3 (1993), pp. 195-199.
A.R. Swensen, The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend, J. Multivariate Anal. 16 (1985), pp. 54-70.
B. Garel and M. Hallin, Local asymptotic normality of multivariate ARMA processes with a linear trend, Ann. Inst. Statist. Math. 47 (1995), pp. 551-579.
M. Hallin and D. Paindaveine, Semiparametrically efficient rank-based inference for shape: I. Optimal rank-based tests for sphericity, Ann. Statist. 34 (2006), pp. 2707-2756.
J. Jurečková, Asymptotic linearity of a rank statistic in regression parameter, Ann. Math. Statist. 40 (1969), pp. 1889-1900.
J-P. Kreiss, On adaptive estimation in stationary ARMA processes, Ann. Statist. 15 (1987), pp. 112-133.