Probability transform; Skew-normal distribution; Skewing mechanism; Tail behavior; Transformation approach; Statistics and Probability; Statistics, Probability and Uncertainty
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Université Libre de Bruxelles, E.C.A.R.E.S., Institut de Recherche en Statistique, Département de Mathématique, CP114, B-1050, Brussels, Belgium
Paindaveine, Davy; Université Libre de Bruxelles, E.C.A.R.E.S., Institut de Recherche en Statistique, Département de Mathématique, CP114, B-1050, Brussels, Belgium
External co-authors :
yes
Language :
English
Title :
Multivariate skewing mechanisms: A unified perspective based on the transformation approach
Fernández C., Steel M.F.J. On Bayesian modeling of fat tails and skewness. J. Amer. Statist. Assoc. 1998, 93:359-371.
Ferreira J.T.A.S., Steel M.F.J. A constructive representation of univariate skewed distributions. J. Amer. Statist. Assoc. 2006, 101:823-829.
Ferreira J.T.A.S., Steel M.F.J. A new class of skewed multivariate distributions with applications to regression analysis. Statist. Sinica 2007, 17:505-529.
Field C., Genton M.G. The multivariate g-and-h distribution. Technometrics 2006, 48:104-111.
Genton M.G., Loperfido N. Generalized skew-elliptical distributions and their quadratic forms. Ann. Inst. Statist. Math. 2005, 57:389-401.
Gilchrist W.G. Statistical Modeling with Quantile Functions 2000, Chapman and Hall/CRC.
Hoaglin D.C. Summarizing shape numerically: the g-and-h distributions. Exploring Data Tables, Trends and Shapes 1986, 461-513. Wiley, New York. D.C. Hoaglin, F. Mosteller, J.W. Tukey (Eds.).
Jones M.C. Families of distributions arising from distributions of order statistics. TEST 2004, 13:1-43.
Jones M.C. A note on rescalings, reparametrizations and classes of distributions. J. Statist. Plann. Inference 2006, 136:3730-3733.
Jones M.C., Pewsey A. Sinh-arcsinh distributions. Biometrika 2009, 96:761-780.
Ley C., Paindaveine D. Le Cam optimal tests for symmetry against Ferreira and steel's general skewed distributions. J. Nonparametr. Stat. 2009, 21:943-967.
Ley C., Paindaveine D. On the singularity of multivariate skew-symmetric models. J. Multivariate Anal. 2010, 101:1434-1444.
Ley, C., Paindaveine, D., 2010. Optimal tests for symmetry in independent component models: an approach based on flexible skewing mechanisms. Manuscript (in preparation).
Mudholkar G.S., Hutson A.D. The epsilon-skew-normal distribution for analyzing near-normal data. J. Statist. Plann. Inference 2000, 83:291-309.
Wang J., Boyer J., Genton M.G. A skew-symmetric representation of multivariate distribution. Statist. Sinica 2004, 14:1259-1270.