LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Département de Mathématique, CP 210, Université Libre de Bruxelles, 1050 Brussels, Belgium
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Skew-symmetric distributions and Fisher information - A tale of two densities
Date de publication/diffusion :
août 2012
Titre du périodique :
Bernoulli
ISSN :
1350-7265
eISSN :
1573-9759
Maison d'édition :
Bernoulli Society for Mathematical Statistics and Probability
Arellano-Valle, R.B. and Azzalini, A. (2008). The centred parametrization for the multivariate skewnormal distribution. J. Multivariate Anal. 99 1362-1382. MR2424355
Arnold, B.C. and Beaver, R.J. (2002). Skewed multivariate models related to hidden truncation and/or selective reporting. Test 11 7-54. MR1915776
Azzalini A. (1985). A Class of Distributions Which Includes the Normal Ones. Scand. J. Statist. 12 171-178. MR0808153
Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica (Bologna) 46 199-208. MR0877720
Azzalini, A. (2005). The skew-normal distribution and related multivariate families. Scand. J. Statist. 32 159-188. MR2188669
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B 61 579-602. MR1707862
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t -distribution. J. R. Stat. Soc. Ser. B 65 367-389. MR1983753
Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83 715-726. MR1440039
Azzalini, A. and Genton, M.G. (2008). Robust likelihood methods based on the skew-t and related distributions. International Statistical Review 76 106-129.
Branco, M.D. and Dey, D.K. (2001). A general class of multivariate skew-elliptical distributions. J. Multivariate Anal. 79 99-113. MR1867257
Chiogna, M. (2005). A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Stat. Methods Appl. 14 331-341. MR2211338
DiCiccio, T.J. and Monti, A.C. (2004). Inferential aspects of the skew-exponential power distribution. J. Amer. Statist. Assoc. 99 439-450. MR2062829
DiCiccio, T.J. and Monti, A.C. (2009). Inferential aspects of the skew-t distribution. Unpublished manuscript.
Genton, M.G., ed. (2004). Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. MR2156754
Genton, M.G. and Loperfido, N. (2005). Generalized skew-elliptical distributions and their quadratic forms. Ann. Inst. Statist. Math. 57 389-401. MR2160656
Gómez, H.W., Venegas, O. and Bolfarine, H. (2007). Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18 395-407. MR2370731
Ley, C. and Paindaveine, D. (2010). On the singularity of multivariate skew-symmetric models. J. Multivariate Anal. 101 1434-1444. MR2609504
Ley, C. and Paindaveine, D. (2010). On Fisher information matrices and profile log-likelihood functions in generalized skew-elliptical models. Metron 68, special issue on "Skew-symmetric and flexible distributions," 235-250.
Pewsey, A. (2000). Problems of inference for Azzalini's skew-normal distribution. J. Appl. Statist. 27 859-870.
Pewsey, A. (2006). Some observations on a simple means of generating skew distributions. In Advances in Distribution Theory, Order Statistics, and Inference (N. Balakrishman, E. Castillo and J.M. Sarabia, eds.) 75-84. Boston, MA: Birkhäuser. MR2226216
Rotnitzky, A., Cox, D.R., Bottai, M. and Robins, J. (2000). Likelihood-based inference with singular information matrix. Bernoulli 6 243-284. MR1748721
Tyler, D.E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist. 15 234-251. MR0885734
van der Vaart, A.W. (2000). Asymptotic Statistics. Cambridge: Cambridge Univ. Press.
Wang, J., Boyer, J. and Genton, M.G. (2004). A skew-symmetric representation of multivariate distributions. Statist. Sinica 14 1259-1270. MR2126352