Bahadur representation; DD- and QQ-plot; Directional statistics; Mahalanobis depth; Rotationally symmetric distributions; Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] In this paper, we introduce a new concept of quantiles and depth for directional (circular and spherical) data. In view of the similarities with the classical Mahalanobis depth for multivariate data, we call it the angular Mahalanobis depth. Our unique concept combines the advantages of both the depth and quantile settings: appealing depth-based geometric properties of the contours (convexity, nestedness, rotation-equivariance) and typical quantile-asymptotics, namely we establish a Bahadur-type representation and asymptotic normality (these results are corroborated by a Monte Carlo simulation study). We introduce new user-friendly statistical tools such as directional DD- and QQ-plots and a quantile-based goodness- of-fit test. We illustrate the power of our new procedures by analyzing a cosmic rays data set.
Disciplines :
Mathematics
Author, co-author :
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Département de Mathématiques and ECARES, Université Libre de Bruxelles, France
Sabbah, Camille; Laboratoire EQUIPPE, Université Lille Nord de France, France
Verdebout, Thomas; INRIA, Laboratoire EQUIPPE, Université Lille Nord de France, France
External co-authors :
yes
Language :
English
Title :
A new concept of quantiles for directional data and the angular Mahalanobis depth
Agostinelli, C. and Romanazzi, M. (2013). Nonparametric analysis of directional data based on data depth. Environ. Ecol. Stat., 20, 253-270. MR3068658
Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist., 37, 577-580. MR0189095
Boomsma, W., Kent, J. T., Mardia, K. V., Taylor, C. C. and Hamelryck, T. (2006). Graphical models and directional statistics capture protein structure. In S. Barber, P. D. Baxter, K. V. Mardia and R. E. Walls (Eds.), LASR 2006-Interdisciplinary Statistics and Bioinfor-matics, Leeds University Press, UK, 91-94.
Bowley, A. L. (1902). Elements of Statistics, 2nd edition. P. S. King, London
Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc., 91, 862-872. MR1395753
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist., 7, 1-26. MR0515681
Fisher, N. I. (1985). Spherical medians. J. Roy. Stat. Soc. B, 47, 342-348. MR0816099
Hallin, M., Paindaveine, D. and Siman, M. (2010). Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth. Ann. Statist., 38, 635-669. MR2604670
Hjort, N. and Pollard, D. (1993). Asymptotics for minimisers of convex processes. Unpublished manuscript, http://www.stat.yale.edu/~pollard/Papers/.
Koenker, R. (2005). Quantile Regression, 1st edition. Cambridge University Press, New York. MR2268657
Koenker, R. and Bassett, G. J. (1978). Regression quantiles. Econometrica, 46, 33-50. MR0474644
Kong, L. and Mizera, I. (2012). Quantile tomography: Using quantiles with multivariate data. Statist. Sinica, 22, 1589-1610. MR3027100
Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions. Ann. Statist., 25, 1998-2017. MR1474078
Kreiss, J. P. (1987). On adaptive estimation in stationary ARMA processes. Ann. Statist., 15, 112-133. MR0885727
LaRiccia, V. N. (1991). Smooth goodness-of-fit tests: A quantile function approach. J. Amer. Statist. Assoc., 86, 427-431. MR1137125
Le Cam, L. and Yang, G. L. (2000). Asymptotics in Statistics, 2nd edition. Springer-Verlag, New York. MR1784901
Lewis, T. and Fisher, N. I. (1982). Graphical methods for investigating the fit of a Fisher distribution to spherical data. Geophys. J. R. astr. Soc., 69, 1-13.
Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal Restimation of a spherical location. Statist. Sinica, 23, 305-332. MR3076169.
Li, J., Cuesta-Albertos, J. and Liu, R. Y. (2012). Dd-classifier: Nonparametric classification procedures based on dd-plots. J. Amer. Statist. Assoc., 107, 737-753. MR2980081
Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist., 18, 405-414. MR1041400
Liu, R. Y. (1992). Data depth and multivariate rank tests. In Y. Dodge(Ed.), L-1 Statistics and Related Methods, North-Holland, Amsterdam, 279-294. MR1214839
Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion). Ann. Statist., 27, 783-858. MR1724033
Liu, R. Y., Serfling, R. J. and Souvaine, D. L. (Eds.) (2006). Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications. Amer. Math. Soc. MR2343124
Liu, R. Y. and Singh, K. (1992). Ordering directional data: Concept of data depth on circles and spheres. Ann. Statist., 20, 1468-1484.MR1186260
Mardia, K. V. and Jupp, P. E. (2000). Directional Statistics. Wiley, Chichester. MR1828667
Moors, J. J. A. (1988). A quantile alternative for kurtosis. J. Roy. Stat. Soc. D, 37, 25-32.
Mosler, K. (2013). Depth statistics. In C. Becker, R. Fried. S. Kuhnt (Eds.), Robustness and Complex Data Structures, Festschrift in Honor of Ursula Gather, Berlin, Springer, 17-34. MR3135871
Purkayastha, S. (1991). A rotationally symmetric directional distribution: Obtained through maximum likelihood characterization. Sankhya Ser. A, 53, 70-83. MR1177768
Rousseeuw, P. J. and Hubert, M. (1999). Regression depth (with discussion). J. Amer. Statist. Assoc., 94, 388-433. MR1702314
Serfling, R. (2002). Quantile functions for multivariate analysis: Approaches and applications. Statist. Neerlandica, 56, 214-232. Special issue: Frontier research in theoretical statistics, 2000 (Eindhoven). MR1916321
Small, C. G. (1990). A survey of multidimensional medians. International Statistical Review, 58, 263-277.
Toyoda, Y., Suga, K., Murakami, K., Hasegawa, H., Shibata, S.,Domingo, V., Escobar, I., Kamata, K., Bradt, H., Clark, G. and La Pointe, M. (1965). Studies of primary cosmic rays in the energy regio1014 eV to 1017 eV (Bolivian Air Shower Joint Experiment). Proc. Int. Conf. Cosmic Rays (London), 2, 708-711.
Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, Canad. Math. Congress, Montreal, Quebec, 523-531. MR0426989
Watson, G. S. (1983). Statistics on Spheres. Wiley, New York. MR0709262
Zuo, Y. and Serfling, R. (2000). General notions of statistical depth function. Ann. Statist., 28, 461-482. MR1790005