Hallin, Marc; ECARES, Université Libre de Bruxelles, 1050 Brussels, Belgium ; ORFE, Princeton University, Princeton, NJ 08544, United States
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; ECARES and Département de Mathématique, Université Libre de Bruxelles, 1050 Brussels, Belgium
External co-authors :
yes
Language :
English
Title :
Skew-Symmetric distributions and fisher information: The double sin of the skew-Normal
Arellano-Valle, R.B. and Azzalini, A. (2008). The centred parametrization for the multivariate skewnormal distribution. J. Multivariate Anal. 99 1362-1382. Corrigendum: 100 (2009), 816. MR2424355
Arellano-Valle, R.B. and Azzalini, A. (2013). The centred parameterization and related quantities of the skew-T distribution. J. Multivariate Anal. 113 73-90. MR2984357
Arnold, B.C. and Beaver, R.J. (2000). The skew-Cauchy distribution. Statist. Probab. Lett. 49 285- 290. MR1794746
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Stat. 12 171- 178. MR0808153
Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica (Bologna) 46 199-208. MR0877720
Azzalini, A. (2005). The skew-Normal distribution and related multivariate families (with discussion). Scand. J. Stat. 32 159-188. MR2188669
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 61 579-602. MR1707862
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t -Distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 367-389. MR1983753
Azzalini, A. and Genton, M.G. (2008). Robust likelihood methods based on the skew-T and related distributions. International Statistical Review 76 106-129.
Chiogna, M. (2005). A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-Normal distribution. Stat. Methods Appl. 14 331-341. MR2211338
DiCiccio, T.J. and Monti, A.C. (2004). Inferential aspects of the skew exponential power distribution. J. Amer. Statist. Assoc. 99 439-450. MR2062829
DiCiccio, T.J. and Monti, A.C. (2011). Inferential aspects of the skew t -Distribution. Quaderni di Statistica 13 1-21.
Genton, M.G., ed. (2004). Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Boca Raton, FL: Chapman & Hall/CRC. MR2156754
Gómez, H.W., Venegas, O. and Bolfarine, H. (2007). Skew-Symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18 395-407. MR2370731
Gupta, A.K., Chang, F.C. and Huang, W.J. (2002). Some skew-Symmetric models. Random Oper. Stoch. Equ. 10 133-140. MR1912936
Hallin, M. and Ley, C. (2012). Skew-Symmetric distributions and Fisher information - A tale of two densities. Bernoulli 18 747-763. MR2948899
Hallin, M., Ley, C. and Monti, A.C. (2013). Optimal tests for symmetry against skew-Normal alternatives. Unpublished manuscript.
Lee, L.F. and Chesher, A. (1986). Specification testing when score test statistics are identically zero. J. Econometrics 31 121-149. MR0846287
Ley, C. (2012). Skew distributions. In Statistical Theory and Methods, Encyclopedia of Environmetrics, 2nd Edition (A. El-Shaarawi and W. Piegorsch, eds.) 1944-1949. New York: Wiley.
Ley, C. and Paindaveine, D. (2010). On the singularity of multivariate skew-Symmetric models. J. Multivariate Anal. 101 1434-1444. MR2609504
Loperfido, N.M.R. (2004). Generalized skew-Normal distributions. In Skew-Elliptical Distributions and Their Applications 65-80. Boca Raton, FL: Chapman & Hall/CRC. MR2155323
Ma, Y. and Genton, M.G. (2004). Flexible class of skew-Symmetric distributions. Scand. J. Stat. 31 459-468. MR2087837
Nadarajah, S. and Kotz, S. (2003). Skewed distributions generated by the normal kernel. Statist. Probab. Lett. 65 269-277. MR2018040
Pewsey, A. (2000). Problems of inference for Azzalini's skew-Normal distribution. J. Appl. Stat. 27 859-870.
Pewsey, A. (2006). Some observations on a simple means of generating skew distributions. In Advances in Distribution Theory, Order Statistics, and Inference (N. Balakrishnan, E. Castillo and J. M. Sarabia, eds.). Stat. Ind. Technol. 75-84. Boston, MA: Birkhäuser. MR2226216
Rotnitzky, A., Cox, D.R., Bottai, M. and Robins, J. (2000). Likelihood-based inference with singular information matrix. Bernoulli 6 243-284. MR1748721
Salvan, A. (1986). Locally most powerful invariant test of normality (in Italian). Atti XXXIII Riunione Società Italiana di Statistica 2 173-179.
Wang, J., Boyer, J. and Genton, M.G. (2004). A skew-Symmetric representation of multivariate distributions. Statist. Sinica 14 1259-1270. MR2126352