Article (Scientific journals)
Characterizations of GIG laws: A survey
Koudou, Angelo Efoévi; LEY, Christophe
2014In Probability Surveys, 11 (2014), p. 161 - 176
Peer reviewed
 

Files


Full Text
13-PS227.pdf
Author postprint (244.06 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Statistics and Probability
Abstract :
[en] Several characterizations of the Generalized Inverse Gaussian (GIG) distribution on the positive real line have been proposed in the literature, especially over the past two decades. These characterization theorems are surveyed, and two new characterizations are established, one based on maximum likelihood estimation and the other is a Stein characterization.
Disciplines :
Mathematics
Author, co-author :
Koudou, Angelo Efoévi;  Université de Lorraine, CNRS, Institut Elie Cartan de Lorraine, UMR 7502, Vandoeuvre-lès-Nancy, France
LEY, Christophe ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; ECARES, Département de Mathématique, Université libre de Bruxelles, Brussels, Belgium
External co-authors :
yes
Language :
English
Title :
Characterizations of GIG laws: A survey
Publication date :
2014
Journal title :
Probability Surveys
ISSN :
1549-5787
Publisher :
Institute of Mathematical Statistics
Volume :
11
Issue :
2014
Pages :
161 - 176
Peer reviewed :
Peer reviewed
Available on ORBilu :
since 25 November 2023

Statistics


Number of views
62 (1 by Unilu)
Number of downloads
8 (0 by Unilu)

Scopus citations®
 
30
Scopus citations®
without self-citations
28
OpenCitations
 
24
OpenAlex citations
 
33

Bibliography


Similar publications



Contact ORBilu