ANOVA; Directional statistics; Local asymptotic normality; Pseudo-FvML tests; Rank-based inference; Asymptotic relative efficiency; Directional data; Finite sample behavior; Invariance principle; Local asymptotic normalities; Symmetric distributions; Statistics and Probability
Abstract :
[en] In this paper, we tackle the ANOVA problem for directional data. We apply the invariance principle to construct locally and asymptotically most stringent rank-based tests. Our semi-parametric tests improve on the optimal parametric tests by being valid under the whole class of rotationally symmetric distributions. Moreover, they keep the optimality property of the latter under a given m-tuple of rotationally symmetric distributions. Asymptotic relative efficiencies are calculated and the finite-sample behavior of the proposed tests is investigated by means of a Monte Carlo simulation. We conclude by applying our findings to a real-data example involving geological data.
Disciplines :
Mathematics
Author, co-author :
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Département de Mathématique and ECARES, Université libre de Bruxelles (ULB), Brussels, Belgium
Swan, Yvik; Département de Mathématique, Université de Liège, Liège, Belgium
Verdebout, Thomas; Département de Mathématique and ECARES, Université libre de Bruxelles (ULB), Brussels, Belgium
External co-authors :
yes
Language :
English
Title :
Efficient ANOVA for directional data
Publication date :
February 2017
Journal title :
Annals of the Institute of Statistical Mathematics
We would like to thank the Associate Editor and two anonymous referees for helpful comments that have led to a clear improvement of our paper. The research of Christophe Ley is supported by a Mandat de Chargé de Recherche from the Fonds National de la Recherche Scientifique, Communauté française de Belgique. Yvik Swan gratefully acknowledges support from the IAP Research Network P7/06 of the Belgian State (Belgian Science Policy).
Abe, T., Shimizu, K., Pewsey, A. (2010). Symmetric unimodal models for directional data motivated by inverse stereographic projection. Journal of the Japan Statistical Society, 40, 45–61.
Beran, R., Fisher, N. I. (1998). Nonparametric comparison of mean directions or mean axes. Annals of Statistics, 26, 472–493.
Bingham, M. S., Mardia, K. V. (1975). Characterizations and applications. In S. Kotz, G. P. Patil, J. K. Ord (Eds.), Statistical Distributions for Scientific Work (Vol. 3, pp. 387–398). Dordrecht and Boston: Reidel.
Breitenberger, E. (1963). Analogues of the normal distribution on the circle and the sphere. Biometrika, 50, 81–88.
Chang, T. (2004). Spatial statistics. Statistical Science, 19, 624–635.
Duerinckx, M., Ley, C. (2012). Maximum likelihood characterization of rotationally symmetric distributions. Sankhyā Series A, 74, 249–262.
Embleton, B. J. J., Mc Donnell, K. L. (1980). Magnetostratigraphy in the Sidney Basin, Southern Australia. Journal of Geomagnetism and Geoelectricity 32(Suppl. III), 304.
Eplett, W. J. R. (1979). The small sample distribution of a Mann–Whitney type statistic for circular data. Annals of Statistics, 7, 446–453.
Eplett, W. J. R. (1982). Two Mann–Whitney type rank tests. Journal of the Royal Statistical Society, Series B, 44, 270–286.
Fisher, R. A. (1953). Dispersion on a sphere. Proceedings of the Royal Society of London, Series A, 217, 295–305.
Fisher, N. I., Hall, P. (1990). New statistical methods for directional data I. Bootstrap comparison of mean directions and the fold test in palaeomagnetism. Geophysical Journal International, 101, 305–313.
Fisher, N. I., Lewis, T., Embleton, B. J. J. (1987). Statistical analysis of spherical data. UK: Cambridge University Press.
Graham, J. W. (1949). The stability and significance of magnetism in sedimentary rocks. Journal of Geophysical Research, 54, 131–167.
Hallin, M. (2012). Asymptotic relative efficiency. In: W. Piegorsch & A. El Shaarawi (Eds.), Encyclopedia of environmetrics (pp. 106–110, 2 nd ed.). UK: Wiley.
Hallin, M., Paindaveine, D. (2008). A general method for constructing pseudo-Gaussian tests. Journal of the Japan Statistical Society, 38, 27–39.
Hallin, M., Paindaveine, D., Verdebout, T. (2010). Optimal rank-based testing for principal components. Annals of Statistics, 38, 3245–3299.
Hallin, M., Paindaveine, D., Verdebout, T. (2013). Optimal rank-based tests for common principal components. Bernoulli, 19, 2524–2556.
Hallin, M., Paindaveine, D., Verdebout, T. (2014). Efficient R-estimation of principal and common principal components. Journal of the American Statistical Association, 109, 1071–1083.
Jammalamadaka, S. R., SenGupta, A. (2001). Topics in circular statistics. Singapore: World Scientific.
Jones, M. C., Pewsey, A. (2005). A family of symmetric distributions on the circle. Journal of the American Statistical Association, 100, 1422–1428.
Jupp, P. E. (1987). A non-parametric correlation coefficient and a two-sample test for random vectors or directions. Biometrika, 74, 887–890.
Kreiss, J. P. (1987). On adaptive estimation in stationary ARMA processes. Annals of Statistics, 15, 112–133.
Langevin, P. (1905). Sur la théorie du magnétisme. Journal de Physique, 4, 678–693.
Le Cam, L., Yang, G. L. (2000). Asymptotics in statistics (2nd ed.). New York: Springer.
Ley, C., Swan, Y., Thiam, B., Verdebout, T. (2013). Optimal R -estimation of a spherical location. Statistica Sinica, 23, 305–332.
Mardia, K. V., Jupp, P. E. (2000). Directional statistics. New York: Wiley.
McFadden, P. L., Jones, D. L. (1981). The fold test in palaeomagnetism. Geophysical Journal of the Royal Astronomical Society, 67, 53–58.
McFadden, P. L., Lowes, F. J. (1981). The discrimination of mean directions drawn from Fisher distributions. Geophysical Journal of the Royal Astronomical Society, 67, 19–33.
Purkayastha, S. (1991). A rotationally symmetric directional distribution: Obtained through maximum likelihood characterization. Sankhyā Series A, 53, 70–83.
Saw, J. G. (1978). A family of distributions on the m -sphere and some hypothesis tests. Biometrika, 65, 69–73.
Tsai, M. T. (2009). Asymptotically efficient two-sample rank tests for modal directions on spheres. Journal of Multivariate Analysis, 100, 445–458.
von Mises, R. (1918). Über die Ganzzahligkeit der Atomgewichte und verwandte Fragen. Physikalische Zeitschrift, 19, 490–500.
Watson, G. S. (1983). Statistics on spheres. New York: Wiley.
Wellner, J. A. (1979). Permutation tests for directional data. Annals of Statistics, 7, 929–943.