non-stationary process, multivariate time series, time-varying models; Statistics and Probability; Statistics, Probability and Uncertainty; non-stationary process; multivariate time series; time-varying models
Abstract :
[en] This paper is about vector autoregressive-moving average models with time-dependent coefficients to represent non-stationary time series. Contrary to other papers in the univariate case, the coefficients depend on time but not on the series' length n. Under appropriate assumptions, it is shown that a Gaussian quasi-maximum likelihood estimator is almost surely consistent and asymptotically normal. The theoretical results are illustrated by means of two examples of bivariate processes. It is shown that the assumptions underlying the theoretical results apply. In the second example, the innovations are marginally heteroscedastic with a correlation ranging from −0.8 to 0.8. In the two examples, the asymptotic information matrix is obtained in the Gaussian case. Finally, the finite-sample behaviour is checked via a Monte Carlo simulation study for n from 25 to 400. The results confirm the validity of the asymptotic properties even for short series and the asymptotic information matrix deduced from the theory.
Disciplines :
Mathematics Business & economic sciences: Multidisciplinary, general & others
Author, co-author :
Alj, Abdelkamel; Faculté des Sciences Juridiques, Économiques et Sociales, Université Moulay Ismail, Meknès, Morocco
Azrak, Rajae; Faculté des Sciences Juridiques, Économiques et Sociales, Université Mohammed V, Rabat, Morocco
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
Alj, A., Jónasson, K. & Mélard, G. (2016). The exact Gaussian likelihood estimation of time-dependent VARMA models. Comput. Statist. Data Anal. 100, 633–644.
Azrak, R. & Mélard, G. (2006). Asymptotic properties of quasi-likelihood estimators for ARMA models with time-dependent coefficients. Stat. Inference Stoch. Process. 9, 279–330.
Basawa, I. V. & Lund, R. L. S. (2001). Large sample properties of parameter estimates for periodic ARMA models. J. Time Series Anal. 22, 651–663.
Bibi, A. & Francq, C. (2003). Consistent and asymptotically normal estimators for cyclically time-dependent linear models. Ann. Inst. Statist. Math. 55, 41–68.
Boubacar Mainassara, Y. & Francq, C. (2011). Estimating structural VARMA models with uncorrelated but non-independent error terms. J. Multivariate Anal. 102, 496–505.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time Series Analysis, Forecasting and Control, (5th edn.), Wiley, New York.
Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods, Springer, New York.
Dahlhaus, R. (2000). A likelihood approximation for locally stationary processes. Ann. Statist. 28, 1762–1794.
Hall, P. & Heyde, C. C. (1980). Martingale Limit Theory and its Application, Academic Press, New York.
Hamdoune, S. (1995). Etude des problèmes d'estimation de certains modèles ARMA évolutifs.Thesis presented at Université Henri Poincaré, Nancy 1.
Hannan, E. J. & Deistler, M. (1988). The Statistical Theory of Linear Systems, Wiley, New York.
Klimko, L. A. & Nelson, P. I. (1978). On conditional least squares estimation for stochastic processes. Ann. Statist. 6, 629–642.
Kohn, R. (1978). Asymptotic properties of time domain Gaussian estimators. Adv. Appl. Probab. 10, 339–359.
Kollo, T. & von Rosen, D. (2005). Advanced Multivariate Statistics with Matrices, Springer Verlag, New York.
Kwoun, G. H. & Yajima, Y. (1986). On an autoregressive model with time-dependent coefficients. Ann. Inst. Statist. Math. Part A 38, 297–309.
Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Springer-Verlag, New York.
Mélard, G. (1985). Analyse de données chronologiques, Coll. Séminaire de mathématiques supérieures-Séminaire scientifique OTAN (NATO Advanced Study Institute) 89, Presses de l ′Université de Montréal, Montréal.Reprint http://homepages.ulb.ac.be/gmelard/Montreal1985_2012.pdf.
Priestley, M. B. (1988). Non-linear and Non-stationary Time Series Analysis, Academic Press, New York.
Quenouille, M. H. (1957). The Analysis of Multiple Time Series, Griffin, London.
Stout, W. F. (1974). Almost Sure Convergence, Academic Press, New York.
Subba Rao, T. (1970). The fitting of non-stationary time-series models with time dependent parameters. J. Roy. Statist. Soc. Ser. B 32, 312–322.
Taniguchi, M. & Kakizawa, Y. (2000). Asymptotic Theory of Statistical Inference for Time Series, Springer Verlag, New York.
Tiao, G. C. & Grupe, M. R. (1980). Hidden periodic autoregressive-moving average models in time series data. J. Roy. Statist. Soc. Ser. B 67, 365–373.
Tjøstheim, D. (1986). Estimation in nonlinear time series models. Stoch. Process. Appl. 21, 251–273.
Van Bellegem, S. & Dahlhaus, R. (2006). Semiparametric estimation by model selection for locally stationary processes. J. Roy. Statist. Soc. Ser. B 68, 721–746.
Van Bellegem, S. & von Sachs, R. (2004). Forecasting economic time series with unconditional time-varying variance. Int. J. Forecasting 20, 611–627.
Whittle, P. (1965). Recursive relations for predictors of non-stationary processes. J. Roy. Statist. Soc. Ser. B 27, 523–532.
Yao, Q. & Brockwell, P. J. (2006). Gaussian maximum likelihood estimation for ARMA models. I. Time series. J. Time Ser. Anal. 27, 857–875.