Capacity factor; Modified energy pattern factor method; Weibull distribution; Wind direction; Wind load density; Wind power density; Capacity factors; Energy pattern factor; Wind directions; Wind load; Renewable Energy, Sustainability and the Environment
Abstract :
[en] The 2-parameter Weibull distribution is widely used, accepted, and recommended as probability law to describe and evaluate the wind speed frequency, which is especially useful for assessing wind resources. In this study, six popular parameter estimation methods are reviewed and compared with a new method that we call Modified Energy Pattern Factor (MEPF) method. The advantage of MEPF is that it is free from binning, linear least square problems or iterative procedures. All methods are compared via a thorough Monte Carlo simulation study with sample sizes varying from 100 to 100,000. The results indicate that the MEPF is a suitable alternative and comparable with the relatively best estimator of the Weibull parameters at each sample size. Consequently, we have used the MEPF to estimate the Weibull parameters of wind data from three regions in India, and we explain how to use these insights for the calculation and prediction of wind energy production. In particular, for harnessing the wind energy, both wind speed and direction are important. For the wind direction assessment, we have compared the conventional von Mises distribution to the new 4-parameter Kato-Jones distribution, and found that the latter approach provides better results.
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Gugliani, G.K.; Department of Mechanical Engineering, IIT B.H.U., Varanasi, India
Sarkar, A.; Department of Mechanical Engineering, IIT B.H.U., Varanasi, India
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
Mandal, S.; Department of Civil Engineering, IIT B.H.U., Varanasi, India
External co-authors :
yes
Language :
English
Title :
New methods to assess wind resources in terms of wind speed, load, power and direction
Chang, T.P., Performance comparison of six numerical methods in estimating Weibull parameters for wind energy applications. Appl. Energy 88 (2011), 272–282.
Chang, T.P., Estimation of wind energy potential using different probability density functions. Appl. Energy 88 (2011), 1848–1856.
Al-Hasan, M., Nigmatullin, R.R., Identification of the generalized Weibull distribution in wind speed data by the eigen-coordinates method. Renew. Energy 28 (2003), 93–110.
Christofferson, R.D., Gillete, D.A., A simple estimator of the two-parameter Weibull distribution. J. Appl. Meteorol. Climatol. 26 (1987), 323–325.
Justus, C.G., Hargraves, W.R., Mikhail, A., Graber, D., Methods for estimating wind speed frequency distribution. J. Appl. Meteorol. 17 (1978), 350–353.
Seguro, J.V., Lambert, T.W., Modern estimation of the parameters of the Weibull wind speed distribution for wind speed analysis. J. Wind Eng. Ind. Aerod. 85 (2000), 75–84.
Stevens, M.J.M., Smulders, P.T., The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Energy 3 (1979), 132–145.
Tar, K., Some statistical characteristics of monthly average wind speed at various heights. Renew. Sustain. Energy Rev. 12 (2008), 1712–1724.
Cook, N.J., Discussion on “Modern estimation of the parameters of the Weibull wind speed distribution for wind speed analysis” by J.V. Seguro and T.W. Lambert. J. Wind Eng. Ind. Aerod. 89 (2009), 867–869.
Akdag, S.A., Dinler, A., A new method to estimate Weibull parameters for wind energy applications. Energy Convers. Manag. 50 (2009), 1761–1766.
Jowder, F.A.L., Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain. Appl. Energy 86 (2009), 538–545.
Akdag, S.A., Guler, O., A novel energy pattern factor method for wind speed distribution parameter estimation. Energy Convers. Manag. 106 (2015), 1124–1133.
Bagiorgas, H.S., Giouli, M., Rehman, S., Al-Hadhrami, L.M., Weibull parameters estimation using four different methods and most energy-carrying wind speed analysis. Int. J. Green Energy 8:5 (2011), 529–554.
Bénédicte, J., Drobinski, P., Errors in wind resource and energy yield assessments based on the Weibull distribution. Ann. Geophys. 35 (2017), 691–700.
Carrasco-Diaz, M., Rivas, D., Orozco-Contreras, M., Sanchez-Montante, O., An assessment of wind power potential along the coast of Tamaulipas, northeastern Mexico. Renew. Energy 78 (2015), 295–305.
Nawri, N., Petersen, G.N., Bjornsson, H., Hahmann, A.N., Jonasson, K., Hasager, C.B., Clausen, N.E., The wind energy potential of Iceland. Renew. Energy 69 (2014), 290–299.
Khadem, S.K., Hussain, M., A pre-feasibility study of wind resources in Kutubdia Island, Bangladesh. Renew. Energy 31:14 (2006), 2329–2341.
Migoya, E., Crespo, A., Jimenez, A., Garcia, J., Manuel, F., Wind energy resource assessment in Madrid region. Renew. Energy 32:9 (2007), 1467–1483.
Sharma, K., Ahmed, M.R., Wind energy resource assessment for the Fiji islands: kadavu island and suva peninsula. Renew. Energy 89 (2016), 168–180.
Razali, A.M., Ahmad, A., Zaharim, A., Sopian, K., Statistical analysis of wind direction data. The 3rd International Conference on Mathematics and Statistics, Indonesia, 2008.
Ley, C., Verdebout, T., Modern Directional Statistics. 2017, Chapman and Hall/CRC Press, Boca Raton, Florida.
Kato, S., Jones, M.C., A tractable and interpretable four-parameter family of unimodal distributions on the circle. Biometrika 102 (2015), 181–190.
ArcGIS, World Boundaries and Places. 2017 Available at: https://www.arcgis.com/home/webmap/viewer.html?webmap=6cd4fabddf1b46a094db42aa6a80547c&zoom=true.
Sarkar, A., Gugliani, G.K., Deep, S., Weibull model for wind speed data analysis of different locations in India. KSCE J. Civ. Eng. 21:7 (2017), 2764–2776.
Chang, T.J., Wu, Y.T., Hsu, H.Y., Chu, C.R., Liao, C.M., Assessment of wind characteristics and wind turbine characteristics in Taiwan. Renew. Energy 28 (2003), 851–871.
Allnoch, N., Windkraftnutzung im nordwestdeutschen Binnenland: Ein System zur Standortbewertung für Windkraftanlagen. 1992, Geographische Kommission for Westfalen Münster, Ardey-Verlag, 160.
Wakil, M.M., Power Plant Technology. 1984, McGraw-Hill, New York.
Janagmshetti, S.H., Rau, V.G., Site matching of wind turbine generators: a case study. IEEE Trans. Energy Convers. 14:4 (1999), 1537–1543.
Janagmshetti, S.H., Rau, V.G., Normalized power curves as a tool for identification of optimum wind turbine generator parameters. IEEE Trans. Energy Convers. 16 (2001), 283–288.
von Mises, R., Uber die Ganzzahligkeit der Atomgewichte und verwandte Fragen. Phys. Z. 19 (1918), 490–500.
Tukey, J.W., Exploratory Data Analysis. 1977, Addison-Wesley, Reading, MA.
Abe, T., Ley, C., A tractable, parsimonious and highly flexible model for cylindrical data, with applications. Econom. Stat. 4 (2017), 91–104.
Qin, X., Zhang, J., Yan, X., A new circular distribution and its application to wind data. J. Math. Res. 2:3 (2010), 12–17.