Article (Périodiques scientifiques)
How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration
Leys, Christophe; Delacre, Marie; Mora, Youri L. et al.
2019In International Review of Social Psychology, 32 (1)
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
289-1-1844-3-10-20190621.pdf
Postprint Auteur (546.55 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Malahanobis distance; Median absolute deviation; Minimum covariance determinant; Outliers; Preregistration; Robust detection; Social Psychology
Résumé :
[en] Researchers often lack knowledge about how to deal with outliers when analyzing their data. Even more frequently, researchers do not pre-specify how they plan to manage outliers. In this paper we aim to improve research practices by outlining what you need to know about outliers. We start by providing a functional definition of outliers. We then lay down an appropriate nomenclature/classification of outliers. This nomenclature is used to understand what kinds of outliers can be encountered and serves as a guideline to make appropriate decisions regarding the conservation, deletion, or recoding of outliers. These decisions might impact the validity of statistical inferences as well as the reproducibility of our experiments. To be able to make informed decisions about outliers you first need proper detection tools. We remind readers why the most common outlier detection methods are problematic and recommend the use of the median absolute deviation to detect univariate outliers, and of the Mahalanobis-MCD distance to detect multivariate outliers. An R package was created that can be used to easily perform these detection tests. Finally, we promote the use of pre-registration to avoid flexibility in data analysis when handling outliers.
Disciplines :
Mathématiques
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Leys, Christophe ;  Université Libre de Bruxelles, Service of Analysis of the Data (SAD), Bruxelles, Belgium
Delacre, Marie;  Université Libre de Bruxelles, Service of Analysis of the Data (SAD), Bruxelles, Belgium
Mora, Youri L.;  Université Libre de Bruxelles, Service of Analysis of the Data (SAD), Bruxelles, Belgium
Lakens, Daniël;  Eindhoven University of Technology, Human Technology Interaction Group, Eindhoven, Netherlands
LEY, Christophe ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Universiteit Gent, Department of Applied Mathematics, Computer Science and Statistics, Gent, Belgium
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
How to classify, detect, and manage univariate and multivariate outliers, with emphasis on pre-registration
Date de publication/diffusion :
2019
Titre du périodique :
International Review of Social Psychology
eISSN :
2397-8570
Maison d'édition :
Ubiquity Press, London, Gbr
Volume/Tome :
32
Fascicule/Saison :
1
Peer reviewed :
Peer reviewed vérifié par ORBi
URL complémentaire :
Subventionnement (détails) :
This work was supported by the Netherlands Organization for Scientific Research (NWO) VIDI grant 452-17-013.
Disponible sur ORBilu :
depuis le 25 novembre 2023

Statistiques


Nombre de vues
644 (dont 1 Unilu)
Nombre de téléchargements
536 (dont 0 Unilu)

citations Scopus®
 
236
citations Scopus®
sans auto-citations
232
OpenCitations
 
109
citations OpenAlex
 
291
citations WoS
 
229

Bibliographie


Publications similaires



Contacter ORBilu