[en] Skew-symmetric distributions are a popular family of flexible distributions that conveniently model non-normal features such as skewness, kurtosis and multimodality. Unfortunately, their frequentist inference poses several difficulties, which may be adequately addressed by means of a Bayesian approach. This paper reviews the main prior distributions proposed for the parameters of skew-symmetric distributions, with special emphasis on the skew-normal and the skew-t distributions which are the most prominent skew-symmetric models. The paper focuses on the univariate case in the absence of covariates, but more general models are also discussed.
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Ghaderinezhad, Fatemeh; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
Loperfido, Nicola; Dipartimento di Economia, Società e Politica, Università degli Studi di Urbino Carlo Bo, Urbino (PU), Italy
External co-authors :
yes
Language :
English
Title :
Bayesian inference for skew-symmetric distributions
Ley, C. Skew distributions. In Statistical Theory and Methods, Encyclopedia of Environmetrics, 2nd ed.; El-Shaarawi, A., Piegorsch, W., Eds.;Wiley: New York, NY, USA, 2012; pp. 1944-1949.
Azzalini, A. A class of distributions which includes the normal ones. Scand. J. Stat. 1985, 12, 171-178.
Azzalini, A.; Capitanio, A. The Skew-Normal and Related Families; IMS Monograph Series; Cambridge University Press: Cambridge, UK, 2014.
Wang, J.; Boyer, J.; Genton, M. A skew-symmetric representation of multivariate distribution. Stat. Sin. 2004, 14, 1259-1270.
Azzalini, A.; Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t -distribution. J. R. Stat. Soc. Ser. B 2003, 65, 367-389.
Azzalini, A. Further results on a class of distributions which includes the normal ones. Statistica 1986, 46, 199-208.
Nadarajah, S. The skew logistic distribution. Statistica 2009, 93, 197-203.
Henze, N. A probabilistic representation of the skew-normal distribution. Scand. J. Stat. 1986, 13, 271-275.
Azzalini, A.; Capitanio, A. Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Ser. B 1999, 61, 579-602.
Azzalini, A.; Genton, M. Robust likelihood methods based on the skew-t and related distributions. Int. Stat. Rev. 2008, 76, 106-129.
Chiogna, M. A note on the asymptotic distribution of the maximum likelihood estimator for the scalar skew-normal distribution. Stat. Methods Appl. 2005, 14, 331-341.
Hallin, M.; Ley, C. Skew-symmetric distributions and Fisher information-A tale of two densities. Bernoulli 2012, 18, 747-763.
Hallin, M.; Ley, C. Skew-symmetric distributions and Fisher information: The double sin of the skew-normal. Bernoulli 2014, 20, 1432-1453.
Ley, C.; Paindaveine, D. On the singularity of multivariate skew-symmetric models. J. Multivar. Anal. 2010, 101, 1434-1444.
Pewsey, A. Problems of inference for Azzalini's skew-normal distribution. J. Appl. Stat. 2000, 27, 859-870.
Arellano-Valle, R.B.; Azzalini, A. The centred parametrization for the multivariate skew-normal distribution. J. Multivar. Anal. 2008, 99, 1362-1382; Erratum in 2009, 100, 816.
Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27-38.
Bernardo, J.M. Reference posterior distributions for Bayesian inference (with discussion). J. R. Stat. Soc. Ser. B 1979, 41, 113-147.
Bayes, T. An essay towards solving a problem in the doctrine of chances.Philos. Trans. R. Soc. Ser. A 1763, 53, 370-418.
Laplace, P.S. Théorie Analytique des Probabilités; Courcier: Paris, France, 1812.
Bernardo, J.M.; Berger, J.O. On the development of reference priors (with discussion). Bayesian Stat. 1992, 4, 35-60.
Efron, B. Why isn't everyone a Bayesian? (with discussion). Am. Stat. 1986, 40, 1-11.
Lindley, D.V. On the measure of the information provided by an experiment. Ann. Math. Stat. 1956, 27, 986-1005.
Berger, J.O.; Bernardo, J.M. Estimating a product of means. Bayesian analysis with reference priors. J. Am. Stat. Assoc. 1989, 84, 200-207.
Lindley, D.V. Fiducial distributions and Bayes' theorem. J. R. Stat. Soc. Ser. B 1958, 20, 102-107.
Datta, G.S.; Mukerjee, R. Probability Matching Priors: Higher Order Asymptotics; Springer: New York, NY, USA, 2004.
Welch, B.; Peers, H.W. On formulae for confidence points based on integrals of weighted likelihoods. J. R. Stat. Soc. Ser. B 1963, 25, 318-329.
Ghosh, M. Objective priors: an introduction for frequentists. J. Stat. Sci. 2011, 26, 187-202.
Mukerjee, R.; Dey, D.K. Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics. Biometrika 1993, 80, 499-505.
Mukerjee, R.; Ghosh, M. Second-order probability matching priors. Biometrika 1997, 84, 970-975.
Liseo, B.; Loperfido, N. A note on reference priors for the scalar skew-normal distribution. J. Stat. Plan. Inference 2006, 136, 373-389.
Cabras, S.; Racugno, W.; Castellanos, M.E.; Ventura, L. A matching prior for the shape parameter of the skew-normal distribution. Scand. J. Stat. 2012, 39, 236-247.
Canale, A.; Scarpa, B. Informative Bayesian inference for the skew-normal distribution. arXiv 2013, arXiv:1305.3080.
Bayes, C.; Branco, E. Bayesian inference for the skewness parameter of the scalar skew-normal distribution. J. Stat. Plan. Inference 2007, 21, 141-163.
Chaibub Neto, E.; Branco, M.D. Bayesian Reference Analysis for Binomial Calibration Problem; Technical Report; IME-USP: São Paulo, Brazil, 2003; p. 12.
Barndorff-Nielsen, O.E. On a formula for the distribution of the maximum likelihood estimator. Biometrika 1983, 70, 343-365.
Pace, L.; Salvan, A.; Ventura, L. Likelihood based discrimination between separate regression models. J. Stat. Plan. Inference 2006, 136, 3539-3553.
Ventura, L.; Cabras, S.; Racugno, W. Prior distributions from pseudo-likelihoods in the presence of nuisance parameters. J. Am. Stat. Assoc. 2009, 104, 768-774.
Arellano-Valle, R.B.; Azzalini, A. On the unification of families of skew-normal distributions. Scand. J. Stat. 2006, 33, 561-574.
Canale, A.; Pagui, E.C.K., Scarpa, B. Bayesian modelling of university first-year students' grades after placement test. J. Appl. Stat. 2016, 43, 3015-3029.
Chib, S.; Jeliazkov, I. Marginal likelihood from the Metropolis-Hastings output. J. Am. Stat. Assoc. 2001, 96, 270-291.
Naranjo, L.; Perez, C.J.; Martin, J. Bayesian analysis of a skewed exponential power distribution. In Proceedings of the Computational Statistics 2012, Limassol, Cyprus, 27-31 August 2012; Colubi, A., Ed.; Physica-Verlag (Springer) Publishing: Heidelberg, Germany, 2012; pp. 641-652.
Hossianzadeh, A.; Zare, K. Bayesian analysis of discrete skewed Laplace distribution. J. Mod. Appl. Stat. Methods 2016, 15, 696-702.
Fernàndez, C.; Steel, M.F.J. Multivariate Student t regression models: pitfalls and inference. Biometrika 1999, 86, 153-167.
Sartori, N. Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. J. Stat. Plan. Inference 2008, 136, 4259-4275.
Branco, E.; Genton, M.; Liseo, B. Objective Bayesian analysis of skew-t distributions. Scand. J. Stat. 2012, 40, 63-85.
Rubio, F.J.; Liseo, B. On the independence Jeffreys prior for skew-symmetric models. Stat. Probab. Lett. 2014, 85, 91-97.
Dette, H.; Ley, C.; Rubio, F.J. Natural (non-)informative priors for skew-symmetric distributions. Scand. J. Stat. 2018, 45, 405-420.
Rubio, F.J.; Steel, J.M. Bayesian modelling of skewness and kurtosis with two-piece scale and shape distributions. Electron. J. Stat. 2015, 9, 1884-1912.
Rubio, F.J.; Genton, M. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis. Stat. Med. 2016, 35, 2441-2454.
Liseo, B.; Parisi, A. Bayesian inference for the multivariate skew-normal model: A population Monte Carlo approach. Comput. Stat. Data Anal. 2013, 63, 125-138.
Parisi, A.; Liseo, B. Objective Bayesian analysis for the multivariate skew-t model. Stat. Methods Appl. 2017, 27, 277-295.
Panagiotelisa, A.; Smith, M. Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions. Int. J. Forecast. 2008, 24, 710-727.
Frühwirth-Schnatter, S.; Pyne, S. Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics 2010, 11, 317-336.
Sahu, S.K.; Dey, D.K.; Branco, M.D. A new class of multivariate skew distributions with applications to Bayesian regression models. Can. J. Stat. 2003, 31, 129-150.
Arellano-Valle, R.B.; Bolfarine, H.; Lachos, V.H. Bayesian inference for skew-normal linear mixed models. J. Appl. Stat. 2007, 34, 663-682.
Samworth, R.J. Recent progress in log-concave density estimation. Stat. Sci. 2018, 33, 493-509.
Liseo, B.; Petrella, L.; Salinetti, G. Block unimodality for multivariate Bayesian robustness. J. Ital. Stat. Soc. 1993, 2, 55-71.