Circular statistics; Le Cam asymptotic theory; Semi-parametric tests; Sine-skewed distributions; Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] Symmetry is one of the most fundamental of dividing hypotheses, its rejection, or not, heavily influencing subsequent modeling strategies. In this paper, the authors construct tests for circular reflective symmetry about an unknown central direction that are asymptotically valid within a semi-parametric class of distributions and maintain certain parametric local and asymptotic optimality properties. The asymptotic distributions of the test statistics under the null hypothesis and under local alternatives are established, and a pre-existing omnibus test is identified as a special case of the proposed construction. The finite-sample properties of the semi-parametric tests are compared with those of other testing approaches in a simulation experiment, and recommendations made regarding testing for reflective symmetry in practice. Analyses of data on the directions of cracks in hip replacements illustrate the proposed methodology.
Ameijeiras-Alonso, Jose ; Statistics Section, Department of Mathematics, KU Leuven, Leuven, Belgium
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
Pewsey, Arthur; Department of Mathematics, University of Extremadura, Cáceres, Spain
Verdebout, Thomas; Mathematics Department, Université Libre de Bruxelles, Brussels, Belgium
External co-authors :
yes
Language :
English
Title :
On optimal tests for circular reflective symmetry about an unknown central direction
Publication date :
August 2021
Journal title :
Statistical Papers
ISSN :
0932-5026
Publisher :
Springer Science and Business Media Deutschland GmbH
Agencia Estatal de Investigación Junta de Extremadura Flemish Science Foundation KU Leuven Ministerio de Economía y Competitividad Agencia Estatal de Investigación Junta de Extremadura Fonds National pour la Recherche Scientifique
Funding text :
We would like to thank two anonymous referees for their insightful and helpful comments on a previous draft of the paper.
Abe T, Pewsey A (2011) Sine-skewed circular distributions. Stat Pap 52:683–707 DOI: 10.1007/s00362-009-0277-x
Abe T, Kubota Y, Shimatani K, Aakala T, Kuuluvainen T (2012) Circular distributions of fallen logs as an indicator of forest disturbance regimes. Ecol Indic 18:559–566 DOI: 10.1016/j.ecolind.2012.01.010
Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew- t distribution. J R Stat Soc Ser B 65:367–389 DOI: 10.1111/1467-9868.00391
Bogdan M, Bogdan K, Futschik A (2002) A data driven smooth test for circular uniformity. Ann Inst Stat Math 54:29–44 DOI: 10.1023/A:1016109603897
Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore DOI: 10.1142/4031
Jones MC, Pewsey A (2005) A family of symmetric distributions on the circle. J Am Stat Assoc 100:1422–1428 DOI: 10.1198/016214505000000286
Jones MC, Pewsey A (2012) Inverse Batschelet distributions for circular data. Biometrics 68:183–193 DOI: 10.1111/j.1541-0420.2011.01651.x
Jupp PE, Spurr B (1983) Sobolev tests for symmetry of directional data. Ann Stat 11:1225–1231 DOI: 10.1214/aos/1176346335
Jupp PE, Regoli G, Azzalini A (2016) A general setting for symmetric distributions and their relationship to general distributions. J Multivar Anal 148:107–119 DOI: 10.1016/j.jmva.2016.02.011
Kato S, Jones MC (2015) A tractable and interpretable four-parameter family of unimodal distributions on the circle. Biometrika 102:181–190 DOI: 10.1093/biomet/asu059
Kreiss J (1987) On adaptive estimation in stationary ARMA processes. Ann Stat 15:112–133 DOI: 10.1214/aos/1176350256
Le Cam L, Yang G (2000) Asymptotics in statistics. Some basic concepts, 2nd edn. Springer, New York
Ley C, Verdebout T (2014) Simple optimal tests for circular reflective symmetry about a specified median direction. Stat Sin 24:1319–1339
Mann KA, Gupta S, Race A, Miller MA, Cleary RJ (2003) Application of circular statistics in the study of crack distribution around cemented femoral components. J Biomech 36:1231–1234 DOI: 10.1016/S0021-9290(03)00091-5
Meintanis S, Verdebout T (2018) Le Cam maximin tests for symmetry of circular data based on the characteristic function. Stat Sin 29:1301–1320
Oliveira M, Crujeiras RM, Rodríguez-Casal A (2012) A plug-in rule for bandwidth selection in circular density estimation. Comput Stat Data Anal 56:3898–3908 DOI: 10.1016/j.csda.2012.05.021
Pérez IA, Sánchez ML, García MA, Pardo N (2012) Analysis of CO2 daily cycle in the low atmosphere at a rural site. Sci Total Environ 431:286–292 DOI: 10.1016/j.scitotenv.2012.05.067
Pewsey A (2002) Testing circular symmetry. Can J Stat 30:591–600 DOI: 10.2307/3316098
Pewsey A (2004) Testing for circular reflective symmetry about a known median axis. J Appl Stat 31:575–585 DOI: 10.1080/02664760410001681828
Schach S (1969) Nonparametric symmetry tests for circular distributions. Biometrika 56:571–577 DOI: 10.1093/biomet/56.3.571
Umbach D, Jammalamadaka SR (2009) Building asymmetry into circular distributions. Stat Probab Lett 79:659–663 DOI: 10.1016/j.spl.2008.10.022