Article (Périodiques scientifiques)
Stein’s Method Meets Computational Statistics: A Review of Some Recent Developments
Anastasiou, Andreas; Barp, Alessandro; Briol, François-Xavier et al.
2023In Statistical Science: A Review Journal of the Institute of Mathematical Statistics, 38 (1), p. 120 - 139
Peer reviewed
 

Documents


Texte intégral
2105.03481.pdf
Postprint Auteur (878.73 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
approximate Markov chain Monte Carlo; control variates; goodness-of-fit testing; likelihood ratio; maximum likelihood estimator; prior sensitivity; sample quality; Stein’s method; variational inference; Statistics and Probability; Mathematics (all); Statistics, Probability and Uncertainty; prior sensitiv-ity; General Mathematics
Résumé :
[en] Stein’s method compares probability distributions through the study of a class of linear operators called Stein operators.While mainly studied in probability and used to underpin theoretical statistics, Stein’s method has led to significant advances in computational statistics in recent years. The goal of this survey is to bring together some of these recent developments, and in doing so, to stimulate further research into the successful field of Stein’s method and statistics. The topics we discuss include tools to benchmark and compare sampling methods such as approximate Markov chain Monte Carlo, deterministic alternatives to sampling methods, control variate techniques, parameter estimation and goodness-of-fit testing
Disciplines :
Mathématiques
Auteur, co-auteur :
Anastasiou, Andreas;  Department of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
Barp, Alessandro;  University of Cambridge, Engineering Dept, Cambridge, United Kingdom
Briol, François-Xavier;  University College London, London, United Kingdom
Ebner, Bruno;  Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Gaunt, Robert E.;  The University of Manchester, Manchester, United Kingdom
Ghaderinezhad, Fatemeh;  The Gradient Building, Brussels, Belgium
Gorham, Jackson;  Data Scientist, Whisper.ai, Inc., United States
Gretton, Arthur;  Gatsby Computational Neuroscience Unit, University College London, Sainsbury Wellcome Centre, London, United Kingdom
LEY, Christophe ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Liu, Qiang;  The University of Texas at Austin, Austin, United States
Mackey, Lester;  Microsoft Research New England, Cambridge, United States
Oates, Chris J.;  Newcastle University, United Kingdom
Reinert, Gesine;  University of Oxford, Department of Statistics, Oxford, United Kingdom
Swan, Yvik;  Université Libre de Bruxelles, Department of Mathematics, Brussels, Belgium
Plus d'auteurs (4 en +) Voir moins
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Stein’s Method Meets Computational Statistics: A Review of Some Recent Developments
Date de publication/diffusion :
2023
Titre du périodique :
Statistical Science: A Review Journal of the Institute of Mathematical Statistics
ISSN :
0883-4237
Maison d'édition :
Institute of Mathematical Statistics
Volume/Tome :
38
Fascicule/Saison :
1
Pagination :
120 - 139
Peer reviewed :
Peer reviewed
Subventionnement (détails) :
AA was supported by a start-up grant from the University of Cyprus. AB was supported by the UK Defence Science and Technology Laboratory (Dstl) and Engineering and Physical Research Council (EPSRC) under the grant EP/R018413/2. FXB and CJO were supported by the Lloyds Register Foundation Programme on Data-Centric Engineering and The Alan Turing Institute under the EPSRC grant EP/N510129/1. AG was supported by the Gatsby Charitable Foundation. RG was supported by a Dame Kathleen Ollerenshaw Research Fellowship. FG and CL were supported by a BOF Starting Grant of Ghent University. QL was supported in part by NSF CAREER No. 1846421. GR was supported in part by EP/T018445/1 and EP/R018472/1. YS was supported in part by CDR/OL J.0197.20 from FRS-FNRS.
Disponible sur ORBilu :
depuis le 25 novembre 2023

Statistiques


Nombre de vues
111 (dont 1 Unilu)
Nombre de téléchargements
25 (dont 0 Unilu)

citations Scopus®
 
38
citations Scopus®
sans auto-citations
18
OpenCitations
 
6
citations OpenAlex
 
23
citations WoS
 
28

Bibliographie


Publications similaires



Contacter ORBilu