Artificial intelligence; Machine learning; Sports medicine; Statistics; Physical Therapy, Sports Therapy and Rehabilitation; Orthopedics and Sports Medicine
Abstract :
[en] In many scientific fields, the growth of knowledge is progressing extremely rapidly. However, this also requires new techniques to identify relevant data from the mass of evidence. Scientific evidence can help improve therapeutic decision-making as well as injury prevention and optimize return to sport activity. Artificial intelligence (AI) enables these processes to be significantly assisted. As these new concepts are known to very few orthopedic surgeons and sports physicians, this article will explain basic concepts of AI, clarify differences with classical statistics, and describe its potential applications in sports orthopedics.
Disciplines :
Mathematics Orthopedics, rehabilitation & sports medicine
Author, co-author :
Oronowicz, Jakub; Klinik für Orthopädie und Unfallchirurgie, Erlangen, Germany
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Pachowsky, Milena; Klinik für Orthopädie und Unfallchirurgie, Erlangen, Germany ; Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
Seil, Romain; Department of Orthopaedic Surgery, Centre Hospitalier, Luxembourg ; Luxembourg Institute of Health, Luxembourg
Tischer, Thomas; Klinik für Orthopädie und Unfallchirurgie, Erlangen, Germany ; Klinik und Poliklinik für Orthopädie, Universitätsmedizin Rostock, Germany
External co-authors :
yes
Language :
German
Title :
Möglichkeiten und Perspektiven zum Einsatz der künstlichen Intelligenz in der Sportorthopädie
Ardern, C.L., Ekas, G.R., Grindem, H., Moksnes, H., Anderson, A.F., Chotel, F., Cohen, M., Forssblad, M., Ganley, T.J., Feller, J.A., Karlsson, J., Kocher, M.S., Laprade, R.F., McNamee, M., Mandelbaum, B., Micheli, L., Mohtadi, N., Reider, B., Roe, J., Seil, R., Siebold, R., Silvers-Granelli, H.J., Soligard, T., Witvrouw, E., Engebretsen, L., International Olympic Committee consensus statement on prevention, diagnosis and management of paediatric anterior cruciate ligament (ACL) injuries. Br J Sports Med 52:2018 (2018), 422–438.
Ayala, F., Lopez-Valenciano, A., Gamez Martin, J.A., De Ste Croix, M., Vera-Garcia, F.J., Garcia-Vaquero, M.D.P., Ruiz-Perez, I., Myer, G.D., A Preventive Model for Hamstring Injuries in Professional Soccer: Learning Algorithms. Int J Sports Med 40 (2019), 344–353.
Feng, C., Zhou, X., Wang, H., He, Y., Li, Z., Tu, C., Research hotspots and emerging trends of deep learning applications in orthopedics: A bibliometric and visualized study. Front Public Health, 10, 2022, 949366.
Hainc, N., Federau, C., Stieltjes, B., Blatow, M., Bink, A., Stippich, C., The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading. Front Neurol, 8, 2017, 489.
Johnson, V.L., Roe, J.P., Salmon, L.J., Pinczewski, L.A., Hunter, D.J., Does Age Influence the Risk of Incident Knee Osteoarthritis After a Traumatic Anterior Cruciate Ligament Injury?. Am J Sports Med 44 (2016), 2399–2405.
Ley, C., Martin, R.K., Pareek, A., Groll, A., Seil, R., Tischer, T., Machine learning and conventional statistics: making sense of the differences. Knee Surg Sports Traumatol Arthrosc 30 (2022), 753–757.
Li, J., Qian, K., Liu, J., Huang, Z., Zhang, Y., Zhao, G., Wang, H., Li, M., Liang, X., Zhou, F., Yu, X., Li, L., Wang, X., Yang, X., Jiang, Q., Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model. J Orthop Translat 34 (2022), 91–101.
Lutter C, Tischer T, Seil R. Importance of Sports Injury Prevention, esska.org, 2021.
Martin, R.K., Ley, C., Pareek, A., Groll, A., Tischer, T., Seil, R., Artificial intelligence and machine learning: an introduction for orthopaedic surgeons. Knee Surg Sports Traumatol Arthrosc 30 (2022), 361–364.
Martin, R.K., Wastvedt, S., Pareek, A., Persson, A., Visnes, H., Fenstad, A.M., Moatshe, G., Wolfson, J., Engebretsen, L., Predicting Anterior Cruciate Ligament Reconstruction Revision: A Machine Learning Analysis Utilizing the Norwegian Knee Ligament Register. J Bone Joint Surg Am 104 (2022), 145–153.
Morse, K.W., Premkumar, A., Zhu, A., Morgenstern, R., Su, E.P., Return to Sport After Hip Resurfacing Arthroplasty. Orthop J Sports Med, 9, 2021 23259671211003521.
Nakahira, Y., Taketomi, S., Kawaguchi, K., Mizutani, Y., Hasegawa, M., Ito, C., Uchiyama, E., Ikegami, Y., Fujiwara, S., Yamamoto, K., Nakamura, Y., Tanaka, S., Ogata, T., Kinematic Differences Between the Dominant and Nondominant Legs During a Single-Leg Drop Vertical Jump in Female Soccer Players. Am J Sports Med 50 (2022), 2817–2823.
Obermeyer, Z., Emanuel, E.J., Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med 375 (2016), 1216–1219.
Phillips, S.P., Spithoff, S., Simpson, A., Artificial intelligence and predictive algorithms in medicine: Promise and problems. Can Fam Physician 68 (2022), 570–572.
Ramkumar, P.N., Karnuta, J.M., Haeberle, H.S., Rodeo, S.A., Nwachukwu, B.U., Williams, R.J. 3rd, Effect of Preoperative Imaging and Patient Factors on Clinically Meaningful Outcomes and Quality of Life After Osteochondral Allograft Transplantation: A Machine Learning Analysis of Cartilage Defects of the Knee. Am J Sports Med 49 (2021), 2177–2186.
Rommers, N., Rossler, R., Verhagen, E., Vandecasteele, F., Verstockt, S., Vaeyens, R., Lenoir, M., D'Hondt, E., Witvrouw, E., A Machine Learning Approach to Assess Injury Risk in Elite Youth Football Players. Med Sci Sports Exerc 52 (2020), 1745–1751.
Schwarz, G.M., Simon, S., Mitterer, J.A., Frank, B.J.H., Aichmair, A., Dominkus, M., Hofstaetter, J.G., Artificial intelligence enables reliable and standardized measurements of implant alignment in long leg radiographs with total knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 30 (2022), 2538–2547.
Tong, Y., Assessment of Physical Fitness and Health Status of Athletes Based on Intelligent Medical Treatment under Machine Learning. Comput Intell Neurosci, 2022, 2022, 9687496.
Van Eetvelde, H., Mendonca, L.D., Ley, C., Seil, R., Tischer, T., Machine learning methods in sport injury prediction and prevention: a systematic review. J Exp Orthop, 8, 2021, 27.
Verhagen, E., Bolling, C., Protecting the health of the @hlete: how online technology may aid our common goal to prevent injury and illness in sport. Br J Sports Med 49 (2015), 1174–1178.
Yamada, Y., Maki, S., Kishida, S., Nagai, H., Arima, J., Yamakawa, N., Iijima, Y., Shiko, Y., Kawasaki, Y., Kotani, T., Shiga, Y., Inage, K., Orita, S., Eguchi, Y., Takahashi, H., Yamashita, T., Minami, S., Ohtori, S., Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs. Acta Orthop 91 (2020), 699–704.
Zhou, Y., Shi, Y., Lu, W., Wan, F., Did Artificial Intelligence Invade Humans? The Study on the Mechanism of Patients' Willingness to Accept Artificial Intelligence Medical Care: From the Perspective of Intergroup Threat Theory. Front Psychol, 13, 2022, 866124.