Prédiction des blessures des ischiojambiers en football à l’aide d’apprentissage automatique _ étude préliminaire sur 284 footballeurs - ScienceDirect.pdf
[en] The hamstring injury is the number one injury diagnosis in football. One of the strategies for hamstring injury prevention is the identification of high-risk athletes. In this article, we implemented machine learning algorithms for injury risk estimation in 284 male footballers playing in 16 professional or semi-professional football teams from 3 countries. The predictors (input data) of the algorithms consisted of an athlete's baseline dataset, including hamstring injury history in the previous season and data measured during a maximum sprint of 30 m. The output data, binary, was the occurrence of hamstring injury. The three models used, logistic regression, random forests and AdaBoost, were compared to a dummy classifier. The results showed that it is possible, to a certain extent, to predict the occurrence of injury with these models. The comparison with the dummy classifier, when considering a set of metrics including F1-score, showed the interest of the three models used. Additionally, the relative importance of predictors can be measured, which can aid in understanding the predominant factors influencing injury. These results suggest avenues for hamstring injury prevention strategies.
Disciplines :
Mathematics Orthopedics, rehabilitation & sports medicine
Author, co-author :
Dandrieux, P.-E.; Université Jean-Monnet Saint-Étienne, Lyon 1, université Savoie Mont-Blanc, laboratoire interuniversitaire de biologie de la motricité, Saint-Étienne, France ; Mines Saint-Étienne, université Lyon, université Jean-Monnet, Inserm, U 1059 Sainbiose, centre CIS, Saint-Étienne, France
Tondut, J.; Université Jean-Monnet Saint-Étienne, Lyon 1, université Savoie Mont-Blanc, laboratoire interuniversitaire de biologie de la motricité, Saint-Étienne, France ; Mines Saint-Étienne, université Lyon, université Jean-Monnet, Inserm, U 1059 Sainbiose, centre CIS, Saint-Étienne, France
Nagahara, R.; Sports Research and Development Core, University of Tsukuba, Ibaraki, Japan ; Faculty of Sports and Budo Coaching Studies, National Institute of Fitness and Sports in Kanoya, Kagoshima, Japan
Mendiguchia, J.; Zentrum Rehabilitation and Performance Center, Department of Physical Therapy, Pamplona, Spain
Morin, J.-B.; Université Jean-Monnet Saint-Étienne, Lyon 1, université Savoie Mont-Blanc, laboratoire interuniversitaire de biologie de la motricité, Saint-Étienne, France ; Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
Lahti, J.; r5 Athletics And Health Sport's Performance Center, Helsinki, Finland
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Edouard, P.; Université Jean-Monnet Saint-Étienne, Lyon 1, université Savoie Mont-Blanc, laboratoire interuniversitaire de biologie de la motricité, Saint-Étienne, France ; Unité de médecine du sport, Service de physiologie clinique et de l'exercice, CHU de Saint-Étienne, Saint-Étienne, France
Navarro, L.; Mines Saint-Étienne, université Lyon, université Jean-Monnet, Inserm, U 1059 Sainbiose, centre CIS, Saint-Étienne, France
External co-authors :
yes
Language :
French
Title :
Prédiction des blessures des ischiojambiers en football à l'aide d'apprentissage automatique : étude préliminaire sur 284 footballeurs
Ekstrand, J., Bengtsson, H., Waldén, M., Davison, M., Khan, K.M., Hägglund, M., Hamstring injury rates have increased during recent seasons and now constitute 24 % of all injuries in men's professional football: the UEFA Elite Club Injury Study from 2001/02 to 2021/22. Br J Sports Med 57:5 (2023), 292–298.
Ruddy, J.D., Shield, A.J., Maniar, N., Williams, M.D., Duhig, S., Timmins, R.G., et al. Predictive modeling of hamstring strain injuries in elite Australian footballers. Med Sci Sports Exerc 50:5 (2018), 906–914.
Tondut, J., Dandrieux, P.E., Navarro, L., Ley, C., Edouard, P., La prédiction des blessures en sport : fiction ou réalité ?. J Traumatol Sport, 2023 [In press].
Van Eetvelde, H., Mendonça, L.D., Ley, C., Seil, R., Tischer, T., Machine learning methods in sport injury prediction and prevention: a systematic review. J Exp Orthop 8 (2021), 1–15.
Claudino, J.G., Capanema, D.D.O., de Souza, T.V., Serrão, J.C., Machado Pereira, A.C., Nassis, G.P., Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: a systematic review. Sports Med Open 5 (2019), 1–12.
Ayala, F., López-Valenciano, A., Martín, J.A.G., Croix, M.D.S., Vera-Garcia, F.J., del Pilar Garcia-Vaquero, M., et al. A preventive model for hamstring injuries in professional soccer: Learning algorithms. Int J Sports Med 40:5 (2019), 344–353.
Breiman, L., Random forests. Machine Learn 45 (2001), 5–32.
Edouard, P., Lahti, J., Nagahara, R., Samozino, P., Navarro, L., Guex, K., et al. Low horizontal force production capacity during sprinting as a potential risk factor of hamstring injury in football. Int J Environ Res Public Health, 18(15), 2021, 7827.