ABRY, P., DELBEKE, L. and FLANDRIN, P. (1999). Wavelet based estimator for the self-similarity parameter of α-stable processes. In 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 1729-1732.
ABRY, P., PESQUET-POPESCU, B. and TAQQU, M. S. (1999). Estimation Ondelette Des Paramètres de Stabilité et d'autosimilarité Des Processus α-Stables Autosimilaires. In 17e Colloque Sur Le Traitement Du Signal et Des Images, FRA, 1999. GRETSI, Groupe d'Etudes du Traitement du Signal et des Images.
AÏT-SAHALIA, Y. and JACOD, J. (2008). Fisher's information for discretely sampled Lévy processes. Econometrica 76 727-761. MR2433480 https://doi.org/10.1111/j.1468-0262.2008.00858.x
AÏT-SAHALIA, Y. and JACOD, J. (2009). Estimating the degree of activity of jumps in high frequency data. Ann. Statist. 37 2202-2244. MR2543690 https://doi.org/10.1214/08-AOS640
AÏT-SAHALIA, Y. and JACOD, J. (2012). Identifying the successive Blumenthal-Getoor indices of a discretely observed process. Ann. Statist. 40 1430-1464. MR3015031 https://doi.org/10.1214/12-AOS976
AÏT-SAHALIA, Y. and JACOD, J. (2014). High-Frequency Financial Econometrics. Princeton Univ. Press, Princeton, NJ.
ASTRAUSKAS, A. (1983). Limit theorems for sums of linearly generated random variables. Lith. Math. J. 23 127-134. MR0706002
AYACHE, A. and HAMONIER, J. (2012). Linear fractional stable motion: A wavelet estimator of the α parameter. Statist. Probab. Lett. 82 1569-1575. MR2930661 https://doi.org/10.1016/j.spl.2012.04.005
AZMOODEH, E., LJUNGDAHL, M. M. and THÄLE, C. (2022). Multi-dimensional normal approximation of heavy-tailed moving averages. Stochastic Process. Appl. 145 308-334. MR4367889 https://doi.org/10.1016/j.spa.2021.11.011
BASSE-O'CONNOR, A., HEINRICH, C. and PODOLSKIJ, M. (2018). On limit theory for Lévy semi-stationary processes. Bernoulli 24 3117-3146. MR3779712 https://doi.org/10.3150/17-BEJ956
BASSE-O'CONNOR, A., HEINRICH, C. and PODOLSKIJ, M. (2019). On limit theory for functionals of stationary increments Lévy driven moving averages. Electron. J. Probab. 24 Paper No. 79, 42. MR4003132 https://doi.org/10.1214/19-ejp336
BASSE-O'CONNOR, A., LACHIÈZE-REY, R. and PODOLSKIJ, M. (2017). Power variation for a class of stationary increments Lévy driven moving averages. Ann. Probab. 45 4477-4528. MR3737916 https://doi.org/10.1214/16-AOP1170
BASSE-O'CONNOR, A. and PODOLSKIJ, M. (2017). On critical cases in limit theory for stationary increments Lévy driven moving averages. Stochastics 89 360-383. MR3574707 https://doi.org/10.1080/17442508.2016.1191493
BULL, A. D. (2016). Near-optimal estimation of jump activity in semimartingales. Ann. Statist. 44 58-86. MR3449762 https://doi.org/10.1214/15-AOS1349
CHONG, C., DELERUE, T. and LI, G. (2021). When frictions are fractional: Rough noise in high-frequency data. Available at arXiv:2106.16149.
CHONG, C., DELERUE, T. andMIES, F. (2022). Rate-optimal estimation of mixed semimartingales. Available at arXiv:2207.10464.
DANG, T. T. N. and ISTAS, J. (2017). Estimation of the Hurst and the stability indices of a H-self-similar stable process. Electron. J. Stat. 11 4103-4150. MR3715823 https://doi.org/10.1214/17-EJS1357
GRAHOVAC, D., LEONENKO, N.N. and TAQQU, M. S. (2015). Scaling properties of the empirical structure function of linear fractional stable motion and estimation of its parameters. J. Stat. Phys. 158 105-119. MR3296276 https://doi.org/10.1007/s10955-014-1126-4
JACOD, J. and SØRENSEN, M. (2018). A review of asymptotic theory of estimating functions. Stat. Inference Stoch. Process. 21 415-434. MR3824976 https://doi.org/10.1007/s11203-018-9178-8
LJUNGDAHL, M. M. and PODOLSKIJ, M. (2020). A minimal contrast estimator for the linear fractional stable motion. Stat. Inference Stoch. Process. 23 381-413. MR4123929 https://doi.org/10.1007/s11203-020-09216-2
LJUNGDAHL, M.M. and PODOLSKIJ, M. (2021).Multidimensional parameter estimation of heavy-tailed moving averages. Scand. J. Stat. 49 593-624. MR4428498 https://doi.org/10.1111/sjos.12527
MAZUR, S., OTRYAKHIN, D. and PODOLSKIJ, M. (2020). Estimation of the linear fractional stable motion. Bernoulli 26 226-252. MR4036033 https://doi.org/10.3150/19-BEJ1124
MIES, F. (2020). Rate-optimal estimation of the Blumenthal-Getoor index of a Lévy process. Electron. J. Stat. 14 4165-4206. MR4175392 https://doi.org/10.1214/20-EJS1769
PIPIRAS, V. and TAQQU, M. S. (2003). Central limit theorems for partial sums of bounded functionals of infinitevariance moving averages. Bernoulli 9 833-855. MR2047688 https://doi.org/10.3150/bj/1066418880
PIPIRAS, V., TAQQU, M. S. and ABRY, P. (2007). Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation. Bernoulli 13 1091-1123. MR2364228 https://doi.org/10.3150/07-BEJ6143
REISS, M. (2013). Testing the characteristics of a Lévy process. Stochastic Process. Appl. 123 2808-2828. MR3054546 https://doi.org/10.1016/j.spa.2013.03.016
STOEV, S., PIPIRAS, V. and TAQQU, M. S. (2002). Estimation of the self-similarity parameter in linear fractional stable motion. Signal Process. 82 1873-1901.
STOEV, S. and TAQQU, M. S. (2005). Asymptotic self-similarity and wavelet estimation for long-range dependent fractional autoregressive integrated moving average time series with stable innovations. J. Time Series Anal. 26 211-249. MR2122896 https://doi.org/10.1111/j.1467-9892.2005.00399.x
VAN ZANTEN, H. (2007). When is a linear combination of independent fBm's equivalent to a single fBm? Stochastic Process. Appl. 117 57-70. MR2287103 https://doi.org/10.1016/j.spa.2006.05.013
XIAO, W.-L., ZHANG, W.-G. and ZHANG, X.-L. (2011). Maximum-likelihood estimators in the mixed fractional Brownian motion. Statistics 45 73-85. MR2772157 https://doi.org/10.1080/02331888.2010.541254
MIES, F. and PODOLSKIJ, M. (2023). Supplement to "Estimation of mixed fractional stable processes using high-frequency data." https://doi.org/10.1214/23-AOS2312SUPP