Article (Périodiques scientifiques)
High-dimensional estimation of quadratic variation based on penalized realized variance
Christensen, Kim; Nielsen, Mikkel Slot; PODOLSKIJ, Mark
2023In Statistical Inference for Stochastic Processes, 26 (2), p. 331 - 359
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
s11203-022-09282-8-2.pdf
Postprint Auteur (1.02 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Bernstein’s inequality; LASSO estimation; Low rank estimation; Quadratic variation; Rank recovery; Realized variance; Shrinkage estimator; Statistics and Probability
Résumé :
[en] In this paper, we develop a penalized realized variance (PRV) estimator of the quadratic variation (QV) of a high-dimensional continuous Itô semimartingale. We adapt the principle idea of regularization from linear regression to covariance estimation in a continuous-time high-frequency setting. We show that under a nuclear norm penalization, the PRV is computed by soft-thresholding the eigenvalues of realized variance (RV). It therefore encourages sparsity of singular values or, equivalently, low rank of the solution. We prove our estimator is minimax optimal up to a logarithmic factor. We derive a concentration inequality, which reveals that the rank of PRV is—with a high probability—the number of non-negligible eigenvalues of the QV. Moreover, we also provide the associated non-asymptotic analysis for the spot variance. We suggest an intuitive data-driven subsampling procedure to select the shrinkage parameter. Our theory is supplemented by a simulation study and an empirical application. The PRV detects about three–five factors in the equity market, with a notable rank decrease during times of distress in financial markets. This is consistent with most standard asset pricing models, where a limited amount of systematic factors driving the cross-section of stock returns are perturbed by idiosyncratic errors, rendering the QV—and also RV—of full rank.
Disciplines :
Mathématiques
Auteur, co-auteur :
Christensen, Kim;  Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
Nielsen, Mikkel Slot;  Department of Mathematics, Aarhus University, Aarhus, Denmark
PODOLSKIJ, Mark  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
High-dimensional estimation of quadratic variation based on penalized realized variance
Date de publication/diffusion :
juillet 2023
Titre du périodique :
Statistical Inference for Stochastic Processes
ISSN :
1387-0874
eISSN :
1572-9311
Maison d'édition :
Springer Science and Business Media B.V.
Volume/Tome :
26
Fascicule/Saison :
2
Pagination :
331 - 359
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 815703 - STAMFORD - Statistical Methods For High Dimensional Diffusions
Intitulé du projet de recherche :
Statistical Methods For High Dimensional Diffusions
Organisme subsidiant :
FP7 Ideas: European Research Council
Danmarks Frie Forskningsfond
Union Européenne
N° du Fonds :
815703
Subventionnement (détails) :
Christensen and Nielsen were supported by the Independent Research Fund Denmark under grant 1028–00030B and 9056–00011B. Podolskij acknowledges funding from the ERC Consolidator Grant 815703 “STAMFORD: Statistical Methods for High Dimensional Diffusions”.
Disponible sur ORBilu :
depuis le 24 novembre 2023

Statistiques


Nombre de vues
131 (dont 2 Unilu)
Nombre de téléchargements
83 (dont 5 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
3
OpenCitations
 
1
citations OpenAlex
 
3
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu