Article (Scientific journals)
Multidimensional parameter estimation of heavy-tailed moving averages
Ljungdahl, Mathias Mørck; PODOLSKIJ, Mark
2022In Scandinavian Journal of Statistics, 49 (2), p. 593 - 624
Peer Reviewed verified by ORBi
 

Files


Full Text
2007.15301.pdf
Author postprint (732.13 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
heavy tails; limit theorems; low frequency; Lévy processes; parametric estimation; Statistics and Probability; Statistics, Probability and Uncertainty; Lé; vy processes
Abstract :
[en] In this article we present a parametric estimation method for certain multiparameter heavy-tailed Lévy-driven moving averages. The theory relies on recent multivariate central limit theorems obtained via Malliavin calculus on Poisson spaces. Our minimal contrast approach is related to previous papers, which propose to use the marginal empirical characteristic function to estimate the one-dimensional parameter of the kernel function and the stability index of the driving Lévy motion. We extend their work to allow for a multiparametric framework that in particular includes the important examples of the linear fractional stable motion, the stable Ornstein–Uhlenbeck process, certain CARMA(2, 1) models, and Ornstein–Uhlenbeck processes with a periodic component among other models. We present both the consistency and the associated central limit theorem of the minimal contrast estimator. Furthermore, we demonstrate numerical analysis to uncover the finite sample performance of our method.
Disciplines :
Mathematics
Author, co-author :
Ljungdahl, Mathias Mørck ;  Department of Mathematics, Aarhus University, Aarhus, Denmark
PODOLSKIJ, Mark  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
yes
Language :
English
Title :
Multidimensional parameter estimation of heavy-tailed moving averages
Publication date :
June 2022
Journal title :
Scandinavian Journal of Statistics
ISSN :
0303-6898
eISSN :
1467-9469
Publisher :
John Wiley and Sons Inc
Volume :
49
Issue :
2
Pages :
593 - 624
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 815703 - STAMFORD - Statistical Methods For High Dimensional Diffusions
Name of the research project :
Statistical Methods For High Dimensional Diffusions
Funders :
Villum Fonden, ERC
Union Européenne
Funding number :
815703
Funding text :
The authors acknowledge financial support from the project “Ambit fields: probabilistic properties and statistical inference” funded by Villum Fonden.
Available on ORBilu :
since 24 November 2023

Statistics


Number of views
99 (1 by Unilu)
Number of downloads
35 (0 by Unilu)

Scopus citations®
 
4
Scopus citations®
without self-citations
2
OpenCitations
 
2
OpenAlex citations
 
2
WoS citations
 
5

Bibliography


Similar publications



Contact ORBilu