No full text
Eprint already available on another site (E-prints, Working papers and Research blog)
The Hyperbolic Plane in $\mathbb{E}^3$
Borrelli, Vincent; Denis, Roland; Lazarus, Francis et al.
2023
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Mathematics - Differential Geometry; 53C42 (Primary), 53C21, 30F45 (Secondary)
Abstract :
[en] We build an explicit $C^1$ isometric embedding $f_{\infty}:\mathbb{H}^2\to\mathbb{E}^3$ of the hyperbolic plane whose image is relatively compact. Its limit set is a closed curve of Hausdorff dimension 1. Given an initial embedding $f_0$, our construction generates iteratively a sequence of maps by adding at each step $k$ a layer of $N_{k}$ corrugations. To understand the behavior of $df_\infty$ we introduce a $formal$ $corrugation$ $process$ leading to a $formal$ $analogue$ $\Phi_{\infty}:\mathbb{H}^2\to \mathcal{L}(\mathbb{R}^2,\mathbb{R}^3)$. We show a self-similarity structure for $\Phi_{\infty}$. We next prove that $df_\infty$ is close to $\Phi_{\infty}$ up to a precision that depends on the sequence $N_*:= (N_{k})_k$. We then introduce the $pattern$ $maps$ $\boldsymbol{\nu}_{\infty}^\Phi$ and $\boldsymbol{\nu}_{\infty}$, of respectively $\Phi_{\infty}$ and $df_\infty$, that together with $df_0$ entirely describe the geometry of the Gauss maps associated to $\Phi_{\infty}$ and $df_\infty$. For well chosen sequences of corrugation numbers, we finally show an asymptotic convergence of $\boldsymbol{\nu}_{\infty}$ towards $\boldsymbol{\nu}_{\infty}^\Phi$ over circles of rational radii.
Disciplines :
Mathematics
Author, co-author :
Borrelli, Vincent;  UCBL - Université Claude Bernard. Lyon 1 [FR] > Institut Camille Jordan
Denis, Roland;  UCBL - Université Claude Bernard. Lyon 1 [FR] > Institut Camille Jordan
Lazarus, Francis;  UGA - Universite Grenoble Alpes [FR] > G-SCOP/Institut Fourier
THEILLIERE, Mélanie ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Thibert, Boris;  UGA - Universite Grenoble Alpes [FR] > Laboratoire Jean Kuntzmann
Language :
English
Title :
The Hyperbolic Plane in $\mathbb{E}^3$
Publication date :
22 March 2023
Source :
FnR Project :
FNR16309996 - Hyperbolic Surfaces: Their Euclidean Renderings, 2021 (01/01/2022-31/12/2024) - Hugo Parlier
Commentary :
51 pages, 8 figures
Available on ORBilu :
since 24 November 2023

Statistics


Number of views
31 (1 by Unilu)
Number of downloads
0 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu