continuous-time observation; high frequency data; Parameter estimation; rate of normal convergence of the estimators; stationary Gaussian processes; strong consistency; Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] Let Z:= {Zt, t ≥ 0} be a stationary Gaussian process. We study two estimators of E[Z02], namely ̂fT (Z):=1 ∫T T 0Z2tdt, and ˜fn(Z):= 1 ∑n n i=1Z2ti, where ti = iΔn, i = 0, 1, …, n, Δn → 0 and Tn:= nΔn → ∞. We prove that the two estimators are strongly consistent and estab-lish Berry-Esseen bounds for a central limit theorem involvinĝfT (Z) and ˜fn(Z). We apply these results to asymptotically stationary Gaussian processes and estimate the drift parameter for Gaussian Ornstein-Uhlenbeck processes.
Disciplines :
Mathematics
Author, co-author :
Douissi, Soukaina; National School of Applied Sciences, Marrakech, Morocco
Es-Sebaiy, Khalifa; Department of Mathematics, Faculty of Science, Kuwait University, Kuwait
KERCHEV, George ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Mathematics > Team Ivan NOURDIN
NOURDIN, Ivan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
yes
Language :
English
Title :
Berry-Esseen bounds of second moment estimators for Gaussian processes observed at high frequency
Publication date :
2022
Journal title :
Electronic Journal of Statistics
eISSN :
1935-7524
Publisher :
Institute of Mathematical Statistics
Volume :
16
Issue :
1
Pages :
636 - 670
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
R-AGR-3585 - O18/12582675 APOGee (01/09/2019 - 31/08/2022) - NOURDIN Ivan
Funders :
FNR - Fonds National de la Recherche
Funding text :
arXiv: 2102.04810 ∗G. Kerchev and I. Nourdin were supported by the FNR grant APOGEe (R-AGR-3585-10) at Luxembourg University.
Alazemi, F., Alsenafi, A., Es-Sebaiy, K. (2020). Parameter estimation for Gaussian mean-reverting Ornstein-Uhlenbeck processes of the second kind: non-ergodic case. Stochastics and Dynamics 20(2), 2050011 (25 pages). MR4080159
Azmoodeh, E., Viitasaari, L. (2015) Parameter estimation based on discrete observations of fractional Ornstein-Uhlenbeck process of the second kind. Stat Inference Stoch Process, 18, 205-227. MR3395605
Bajja, S., Es-Sebaiy, K., Viitasaari, L. (2020). Volatility estimation in fractional Ornstein-Uhlenbeck models. Stochastic Models, 36(1), 94-111. MR4067888
Biermé, H., Bonami, A., Nourdin, I., Peccati, G. (2012). Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA 9, no. 2, 473-500. MR3069374
Brockwell, P., Davis, R. (2009) Time Series: Theory and Methods (Springer series in Statistics), second ed. Springer. MR2839251
Carbery, A., Wright, J. (2001) Distributional and Lq norm inequalities for polynomials over convex bodies in Rn. Math. Res. Lett. 8, 3, 233-248. MR1839474
Chen, Y., Hu, Y., Long, H. (2019) Generalized moment estimators for α-stable Ornstein–Uhlenbeck motions from discrete observations. Stat. Inference Stoch. Process. 23, 1, 53-81. MR4072252
Chen, Y., Tian, L., Ying, L. (2020) Second moment estimator for an AR(1) model driven by a long memory Gaussian noise. arXiv preprint arXiv:2008.12443.
Cheridito, P. (2004). Gaussian moving averages, semimartingales and op-tion pricing. Stochastic processes and their applications, 109(1), 47-68. MR2024843
Cheridito, P., Kawaguchi, H., Maejima, M. (2003). Fractional Ornstein-Uhlenbeck processes, Electr. J. Prob. 8, 1-14. MR1961165
Douissi, S., Es-Sebaiy, K., Viens, F. (2019). Berry-Esseen bounds for parameter estimation of general Gaussian processes. ALEA, Lat. Am. J. Probab. Math. Stat., 16, 633-664. MR3949273
El Machkouri, M., Es-Sebaiy, K., Ouknine, Y. (2016). Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian pro-cesses. Journal of the Korean Statistical Society 45, 329-341. MR3527650
El Onsy, B., Es-Sebaiy, K., Viens, F. (2017). Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics, 89(2), 431-468. MR3590429
Es-Sebaiy, K. (2013). Berry-Esseen bounds for the least squares estimator for discretely observed fractional Ornstein-Uhlenbeck processes. Statist. Probab. Lett. 83., 10, 2372-2385. MR3093828
Es-Sebaiy, K., Alazemi, F., Al-Foraih, M. (2019). Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes. Acta Mathematica Scientia, 39(4), 989-1002. MR4066516
Es-Sebaiy, K. and Es.Sebaiy, M. (2020). Estimating drift parameters in a non-ergodic Gaussian Vasicek-type model. Statistical Methods and Appli-cations. MR4266406
Es-Sebaiy, K., Viens, F. (2019). Optimal rates for parameter estimation of stationary Gaussian processes. Stochastic Processes and their Applications, 129(9), 3018-3054. MR3985554
Jiang, H., Liu, J., Wang, S. (2018) Self-normalized asymptotic properties for the parameter estimation in fractional Ornstein-Uhlenbeck process. Stochastics and Dynamics. vol. 18, 5 (29 pages). MR3956358
Hu, Y., Nualart, D. (2010). Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist. Probab. Lett. 80, 1030-1038. MR2638974
Hu, Y., Nualart, D., Zhou, H. (2019). Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Statistical Inference for Stochastic Processes, 22(1), 111-142. MR3918739
Hu, Y., Song, J. (2013). Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations. F. Viens et al (eds), Malli-avin Calculus and Stochastic Analysis: A Festschrift in Honor of David Nualart, 427-442, Springer. MR3070455
Kaarakka, T., Salminen, P. (2011). On Fractional Ornstein-Uhlenbeck pro-cess. Communications on Stochastic Analysis, 5 (1), 121-133. MR2808539
Karhunen, K., (1950). Über die Struktur stationärer zufälliger Funktionen. Ark. Mat. 1 (3), 141-160. MR0034557
Kosov, E. (2019). Total variation distance estimates via L2-norm for polynomials in log-concave random vectors. International Mathematics Research Notices, rnz278. https://doi.org/10.1093/imrn/rnz278 MR4338224
Kloeden, P. and Neuenkirch, A. (2007). The pathwise convergence of approximation schemes for stochastic differential equations. LMS J. Comp. Math. 10, 235-253. MR2320830
Křáž, P., Maslowski, B. (2019). Central limit theorems and minimum-contrast estimators for linear stochastic evolution equations. Stochastics, 91, 1109-1140. MR4023510
Nourdin, I. (2013) Lectures on Gaussian approximations with Malliavin calculus. Séminaire de Probabilités XLV. Lecture Notes in Math, 2078, Springer, Cham. MR3185909
Nourdin, I., Peccati, G. (2012). Normal approximations with Malliavin cal-culus: from Stein’s method to universality. Cambridge Tracts in Mathematics 192. Cambridge University Press, Cambridge. MR2962301
Nourdin, I., Peccati, G. (2015). The optimal fourth moment theorem. Proc. Amer. Math. Soc. 143, 3123-3133. MR3336636
Nourdin, I., Tran, T. D. (2019). Statistical inference for Vasicek-type model driven by Hermite processes. Stochastic Processes and their Applications, 129(10), 3774-3791. MR3997661
Nourdin, I., Nualart, D. (2013) Fisher Information and the Fourth Moment Theorem. Ann. Inst. H. Poincaré Probab. Statist., 52, 2, 849-867. MR3498012
Nualart, D. (2006). The Malliavin calculus and related topics. Springer-Verlag, Berlin. MR2200233
Nualart, D., Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33, no. 1, 177-193. MR2118863
Pham-Dinh-Tuan (1977). Estimation of parameters of a continuous time Gaussian stationary process with rational spectral density, Biometrica 64, 2, 385-399. MR0501676
Schervish, M. (1997). Theory of Statistics (Springer series in Statistics) Springer. MR1354146
Sottinen, T., Viitasaari, L. (2018). Parameter estimation for the Langevin equation with stationary-increment Gaussian noise. Statistical Inference for Stochastic Processes, 21(3), 569-601. MR3846993
Wood, A., Chan, G. (1994). Simulation of stationary Gaussian pro-cesses. Journal of computational and graphical statistics, 3(4):409-432. MR1323050