Mathematics - Number Theory; Mathematics - Combinatorics; 05A10, 11B50, 11B75
Résumé :
[en] We study the period of the linear map T:Z_m^n --> Z_m^n:(a_0,...,a_{n-1}) --> (a_0+a_1,...,a_{n-1}+a_0) as a
function of m and n, where Z_m stands for the ring of integers
modulo m. Since this map is a variant of the Ducci sequence, several known
results are adapted in the context of T. The main theorem of this paper
states that the period modulo m can be deduced from the prime factorization
of m and the periods of its prime factors. We also characterize the tuples
that belong to a cycle when m is prime.
Disciplines :
Mathématiques
Auteur, co-auteur :
DULAR, Bruno ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
C. Avart, A characterization of converging Ducci sequences over Z2, The Fibonacci Quarterly, 49.2 (2011), 155-157.
F. Breuer, Ducci sequences and cyclotomic fields, Journal of Difierence Equations and Applications, 16.7 (2010), 847-862.
F. Breuer, Ducci sequences in higher dimensions, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7.24 (2007).
C. Ciamberlini and A. Marengoni, Su una interessante curiosita` numerica, Periodiche di Matematiche, 17 (1937), 25-30.
A. Ehrlich, Periods in Ducci's n-number game of difierences, The Fibonacci Quarterly, 28.4 (1990), 302- 305.
D. Grinberg and V. Reiner, Hopf algebras in combinatorics, https://arxiv.org/abs/1409.8356v5/.
D. Grinberg, The Lucas and Babbage congruences, http://www.cip.ifi.lmu.de/~grinberg/.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, 1979, 202.
A. M. Legendre, Th_eorie des nombres, Firmin Didot Fr_eres, Paris, 1830.
A. Ludington Furno, Cycles of difierences of integers, Journal of Number Theory, 13.2 (1981), 255-261.
A. Ludington-Young, Even Ducci-sequences, The Fibonacci Quarterly, 37.2 (1999), 145-153.
M. Misiurewicz, J. G. Stevens, and D. M. Thomas, Iterations of linear maps over _nite fields, Linear Algebra and its Application, 413.1 (2006), 218-234.
OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/ A001220, 2017.
F. B. Wong, Ducci processes, The Fibonacci Quarterly, 20.2 (1982), 97-105.