Chromatography; Data processing; FAIR data management; High-resolution mass spectrometry; Ion mobility; Non-target screening; Organic contaminants; Quality assurance and control; Sample preparation; Suspect screening; Pollution
Résumé :
[en] Increasing production and use of chemicals and awareness of their impact on ecosystems and humans has led to large interest for broadening the knowledge on the chemical status of the environment and human health by suspect and non-target screening (NTS). To facilitate effective implementation of NTS in scientific, commercial and governmental laboratories, as well as acceptance by managers, regulators and risk assessors, more harmonisation in NTS is required. To address this, NORMAN Association members involved in NTS activities have prepared this guidance document, based on the current state of knowledge. The document is intended to provide guidance on performing high quality NTS studies and data interpretation while increasing awareness of the promise but also pitfalls and challenges associated with these techniques. Guidance is provided for all steps; from sampling and sample preparation to analysis by chromatography (liquid and gas—LC and GC) coupled via various ionisation techniques to high-resolution tandem mass spectrometry (HRMS/MS), through to data evaluation and reporting in the context of NTS. Although most experience within the NORMAN network still involves water analysis of polar compounds using LC–HRMS/MS, other matrices (sediment, soil, biota, dust, air) and instrumentation (GC, ion mobility) are covered, reflecting the rapid development and extension of the field. Due to the ongoing developments, the different questions addressed with NTS and manifold techniques in use, NORMAN members feel that no standard operation process can be provided at this stage. However, appropriate analytical methods, data processing techniques and databases commonly compiled in NTS workflows are introduced, their limitations are discussed and recommendations for different cases are provided. Proper quality assurance, quantification without reference standards and reporting results with clear confidence of identification assignment complete the guidance together with a glossary of definitions. The NORMAN community greatly supports the sharing of experiences and data via open science and hopes that this guideline supports this effort.
Précision sur le type de document :
Compte rendu
Disciplines :
Chimie
Auteur, co-auteur :
Hollender, Juliane ; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
SCHYMANSKI, Emma ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Environmental Cheminformatics
Ahrens, Lutz ; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Alygizakis, Nikiforos ; Environmental Institute, Koš, Slovakia ; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
Béen, Frederic ; Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands ; KWR Water Research Institute, Nieuwegein, Netherlands
Bijlsma, Lubertus ; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
Brunner, Andrea M. ; TNO Environmental Modelling Sensing and Analysis, Energy and Materials Transition Unit, Utrecht, Netherlands
Celma, Alberto ; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
Fildier, Aurelie ; Institut Des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
Fu, Qiuguo ; Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
Gago-Ferrero, Pablo ; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
Gil-Solsona, Ruben ; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
Haglund, Peter ; Department of Chemistry, Umeå University, Umeå, Sweden
Hansen, Martin ; Department of Environmental Science, Aarhus University, Roskilde, Denmark
Kaserzon, Sarit ; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Australia
Kruve, Anneli ; Department of Environmental Science, Stockholm University, Stockholm, Sweden
Lamoree, Marja ; Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Margoum, Christelle ; INRAE, UR RiverLy, Villeurbanne, France
Meijer, Jeroen ; Chemistry for Environment and Health, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
Merel, Sylvain ; INRAE, UR RiverLy, Villeurbanne, France
Rauert, Cassandra ; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Australia
Rostkowski, Pawel ; The Climate and Environmental Research Institute NILU, Kjeller, Norway
Samanipour, Saer ; Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
Schulze, Bastian ; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba, Australia
Schulze, Tobias ; Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
SINGH, Randolph ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Environmental Cheminformatics > Team Emma SCHYMANSKI ; Chemical Contamination of Marine Ecosystems Unit, French Research Institute for the Exploitation of the Sea, Nantes, France
Slobodnik, Jaroslav ; Environmental Institute, Koš, Slovakia
Steininger-Mairinger, Teresa ; Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
Thomaidis, Nikolaos S. ; Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
Togola, Anne ; BRGM, Orléans, France
Vorkamp, Katrin ; Department of Environmental Science, Aarhus University, Roskilde, Denmark
Vulliet, Emmanuelle ; Institut Des Sciences Analytiques, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
Zhu, Linyan ; Department of Environmental Science, Aarhus University, Roskilde, Denmark
Krauss, Martin ; Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K (2020) Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol 54:2575–2584 DOI: 10.1021/acs.est.9b06379
American Chemical Society (2023) CAS REGISTRY—The CAS Substance Collection. https://www.cas.org/cas-data/cas-registry
Hollender J, Schymanski EL, Singer HP, Ferguson PL (2017) Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol 51:11505–11512 DOI: 10.1021/acs.est.7b02184
Hollender J et al (2019) High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management. Environ Sci Eur 31:42 DOI: 10.1186/s12302-019-0225-x
Jungclaus G, Avila V, Hites R (1978) Organic compounds in an industrial Wastewater: a case study of their environmental impact. Environ Sci Technol 12:88–96 DOI: 10.1021/es60137a015
U.S. Department of Commerce (2023) NIST20: Updates to the NIST Tandem and Electron Ionization Spectral Libraries. National Institute of Standards and Technology (NIST). https://www.nist.gov/programs-projects/nist20-updates-nist-tandem-and-electron-ionization-spectral-libraries
Samokhin AS, Revelsky IA (2012) Intensity of molecular ion peak in electron ionization mass spectra. J Anal Chem 67:1066–1068 DOI: 10.1134/S1061934812140080
Schulze B et al (2020) An assessment of quality assurance/quality control efforts in high resolution mass spectrometry non-target workflows for analysis of environmental samples. TrAC Trends Anal Chem 133:116063 DOI: 10.1016/j.trac.2020.116063
Rostkowski P et al (2019) The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem 411:1957–1977 DOI: 10.1007/s00216-019-01615-6
Schymanski E et al (2015) Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem 407:6237–6255 DOI: 10.1007/s00216-015-8681-7
Ulrich EM et al (2019) EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings. Anal Bioanal Chem 411:853–866 DOI: 10.1007/s00216-018-1435-6
BP4NTA. BP4NTA https://nontargetedanalysis.org/
Peter KT et al (2021) Nontargeted analysis study reporting tool: a framework to improve research transparency and reproducibility. Anal Chem 93:13870–13879 DOI: 10.1021/acs.analchem.1c02621
Mechelke J, Longrée P, Singer H, Hollender J (2019) Vacuum-assisted evaporative concentration combined with LC-HRMS/MS for ultra-trace-level screening of organic micropollutants in environmental water samples. Anal Bioanal Chem 411:2555–2567 DOI: 10.1007/s00216-019-01696-3
Montes R et al (2017) Screening for polar chemicals in water by trifunctional mixed-mode liquid chromatography-high resolution mass spectrometry. Environ Sci Technol 51:6250–6259 DOI: 10.1021/acs.est.6b05135
Kern S, Fenner K, Singer HP, Schwarzenbach RP, Hollender J (2009) Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry. Environ Sci Technol 43:7039–7046 DOI: 10.1021/es901979h
Alygizakis N et al (2022) A multi-label classifier for predicting the most appropriate instrumental method for the analysis of contaminants of emerging concern. Metabolites 12:199 DOI: 10.3390/metabo12030199
Black G et al (2023) Exploring chemical space in non-targeted analysis: a proposed ChemSpace tool. Anal Bioanal Chem 415:35–44 DOI: 10.1007/s00216-022-04434-4
Schulze T, Streck G, Paschke A (2011) 3.06—sampling and conservation. In: Wilderer P (ed) Treatise on water science. Elsevier, pp 131–152. 10.1016/B978-0-444-53199-5.00054-3 DOI: 10.1016/B978-0-444-53199-5.00054-3
European Commission (2021) Water Framework Directive—Guidance documents. https://ec.europa.eu/environment/water/water-framework/facts_figures/guidance_docs_en.htm
Ort C, Lawrence MG, Rieckermann J, Joss A (2010) Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ Sci Technol 44:6024–6035 DOI: 10.1021/es100779n
Coes AL, Paretti NV, Foreman WT, Iverson JL, Alvarez DA (2014) Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods. Sci Total Environ 473–474:731–741 DOI: 10.1016/j.scitotenv.2013.12.082
Schulze T et al (2017) Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Sci Total Environ 581–582:350–358 DOI: 10.1016/j.scitotenv.2016.12.140
Jonsson O, Paulsson E, Kreuger J (2019) TIMFIE sampler–a new time-integrating, active, low-tech sampling device for quantitative monitoring of pesticides in whole water. Environ Sci Technol 53:279–286 DOI: 10.1021/acs.est.8b02966
Stravs MA, Stamm C, Ort C, Singer H (2021) Transportable automated HRMS platform “MS2field” enables insights into water-quality dynamics in real time. Environ Sci Technol Lett 8:373–380 DOI: 10.1021/acs.estlett.1c00066
Beckers L-M et al (2020) Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis. Sci Total Environ 727:138388 DOI: 10.1016/j.scitotenv.2020.138388
Vergeynst L, Langenhove H, Joos P, Demeestere K (2014) Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry. Anal Bioanal Chem 406:2533–2547 DOI: 10.1007/s00216-014-7672-4
Backe WJ (2021) Suspect and non-target screening of reuse water by large-volume injection liquid chromatography and quadrupole time-of-flight mass spectrometry. Chemosphere 266:128961 DOI: 10.1016/j.chemosphere.2020.128961
Köke N, Zahn D, Knepper TP, Frömel T (2018) Multi-layer solid-phase extraction and evaporation—enrichment methods for polar organic chemicals from aqueous matrices. Anal Bioanal Chem 410:2403–2411 DOI: 10.1007/s00216-018-0921-1
Huntscha S, Singer HP, McArdell CS, Frank CE, Hollender J (2012) Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1268:74–83 DOI: 10.1016/j.chroma.2012.10.032
ISO (2017) ISO 18400-101:2017, Soil quality—Sampling—Part 101: Framework for the preparation and application of a sampling plan
ISO (2017) ISO 5667-12:2017, Water quality—Sampling—Part 12: Guidance on sampling of bottom sediments from rivers, lakes and estuarine areas
ISO (2011) ISO 5667-13:2011, Water quality—Sampling—Part 13: Guidance on sampling of sludges
ISO (2008) ISO 5667-17:2008, Water quality—Sampling—Part 17: Guidance on sampling of bulk suspended solids
Chiaia-Hernández AC, Günthardt BF, Frey MP, Hollender J (2017) Unravelling contaminants in the anthropocene using statistical analysis of liquid chromatography–high-resolution mass spectrometry nontarget screening data recorded in lake sediments. Environ Sci Technol 51:12547–12556 DOI: 10.1021/acs.est.7b03357
Pintado-Herrera MG, González-Mazo E, Lara-Martín PA (2016) In-cell clean-up pressurized liquid extraction and gas chromatography–tandem mass spectrometry determination of hydrophobic persistent and emerging organic pollutants in coastal sediments. J Chromatogr A 1429:107–118 DOI: 10.1016/j.chroma.2015.12.040
Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431 DOI: 10.1093/jaoac/86.2.412
Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J (2014) Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Anal Bioanal Chem 406:7323–7335 DOI: 10.1007/s00216-014-8166-0
Grigoriadou A, Schwarzbauer J (2011) Non-target screening of organic contaminants in sediments from the industrial coastal area of Kavala City (NE Greece). Water Air Soil Pollut 214:623–643 DOI: 10.1007/s11270-010-0451-8
Veenaas C, Bignert A, Liljelind P, Haglund P (2018) Nontarget screening and time-trend analysis of sewage sludge contaminants via two-dimensional gas chromatography-high resolution mass spectrometry. Environ Sci Technol 52:7813–7822 DOI: 10.1021/acs.est.8b01126
Park H-M, Hong S-M, Agustin-Camacho MR, Dirwono W, Lee K-B (2009) Pressurized liquid extraction for the simultaneous analysis of polychlorinated biphenyls and polybrominated diphenyl ethers from soil by GC-TOF-MS detection. J Chromatogr Sci 47:681–688 DOI: 10.1093/chromsci/47.8.681
Rogowska J, Sychowska J, Cieszynska-Semenowicz M, Wolska L (2016) Elemental sulfur in sediments: analytical problems. Environ Sci Pollut Res 23:24871–24879 DOI: 10.1007/s11356-016-7739-1
Hung H et al (2010) Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993–2006. Sci Total Environ 408:2854–2873 DOI: 10.1016/j.scitotenv.2009.10.044
Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC (2004) Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environ Sci Technol 38:34–41 DOI: 10.1021/es034705n
Röhler L, Bohlin-Nizzetto P, Rostkowski P, Kallenborn R, Schlabach M (2021) Non-target and suspect characterisation of organic contaminants in ambient air—part 1: combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography. Atmospheric Chem Phys 21:1697–1716 DOI: 10.5194/acp-21-1697-2021
Rohler L et al (2020) Non-target and suspect characterisation of organic contaminants in Arctic air—part 2: application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air. Atmospheric Chem Phys 20:9031–9049 DOI: 10.5194/acp-20-9031-2020
Hashimoto S et al (2013) Selective extraction of halogenated compounds from data measured by comprehensive multidimensional gas chromatography/high resolution time-of-flight mass spectrometry for non-target analysis of environmental and biological samples. J Chromatogr A 1282:183–189 DOI: 10.1016/j.chroma.2013.01.052
Cao Z-G et al (2012) Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environ Int 49:24–30 DOI: 10.1016/j.envint.2012.08.010
He R-W et al (2018) Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environ Res 162:166–172 DOI: 10.1016/j.envres.2017.12.014
Lewis RG, Fortune CR, Willis RD, Camann DE, Antley JT (1999) Distribution of pesticides and polycyclic aromatic hydrocarbons in house dust as a function of particle size. Environ Health Perspect 107:721–726 DOI: 10.1289/ehp.99107721
Castro G, Rodríguez I, Ramil M, Cela R (2019) Assessment of gas chromatography time-of-flight mass spectrometry for the screening of semi-volatile compounds in indoor dust. Sci Total Environ 688:162–173 DOI: 10.1016/j.scitotenv.2019.06.192
Moschet C, Anumol T, Lew BM, Bennett DH, Young TM (2018) Household dust as a repository of chemical accumulation: new insights from a comprehensive high-resolution mass spectrometric study. Environ Sci Technol 52:2878–2887 DOI: 10.1021/acs.est.7b05767
Ouyang X, Weiss JM, de Boer J, Lamoree MH, Leonards PEG (2017) Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. Chemosphere 166:431–437 DOI: 10.1016/j.chemosphere.2016.09.107
Caban M, Stepnowski P (2020) Determination of bisphenol A in size fractions of indoor dust from several microenvironments. Microchem J 153:104392 DOI: 10.1016/j.microc.2019.104392
Christia C, Poma G, Caballero-Casero N, Covaci A (2021) Suspect screening analysis in house dust from Belgium using high resolution mass spectrometry; prioritization list and newly identified chemicals. Chemosphere 263:127817 DOI: 10.1016/j.chemosphere.2020.127817
Mullin L et al (2020) Liquid chromatography-ion mobility-high resolution mass spectrometry for analysis of pollutants in indoor dust: identification and predictive capabilities. Anal Chim Acta 1125:29–40 DOI: 10.1016/j.aca.2020.05.052
Munz NA, Fu Q, Stamm C, Hollender J (2018) Internal concentrations in gammarids reveal increased risk of organic micropollutants in wastewater-impacted streams. Environ Sci Technol 52:10347–10358 DOI: 10.1021/acs.est.8b03632
European Commission (2014) Common Implementation Strategy for the Water Framework Directive (2000/60/EC): on biota monitoring (the implementation of EQSbiota) under the Water Framework Directive
Helcom (2019) Monitoring guideline on biological material sampling and sample handling for the analysis of persistent organic pollutants (PAHs, PCBs and OCPs) and metallic trace elements. https://helcom.fi/wp-content/uploads/2020/04/HELCOM-Guidelines-on-biological-material-sampling-1.pdf
Shaul NJ et al (2015) Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of Bottlenose Dolphins (Tursiops truncatus) from the Southern California Bight. Environ Sci Technol 49:1328–1338 DOI: 10.1021/es505156q
Dwiyitno et al (2016) Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia. Mar Pollut Bull 110:767–777 DOI: 10.1016/j.marpolbul.2016.01.034
Rebryk A, Haglund P (2021) Non-targeted screening workflows for gas chromatography-high-resolution mass spectrometry analysis and identification of biomagnifying contaminants in biota samples. Anal Bioanal Chem 413:479–501 DOI: 10.1007/s00216-020-03018-4
Smedes F et al (2020) Unraveling the relationship between the concentrations of hydrophobic organic contaminants in freshwater fish of different trophic levels and water using passive sampling. Environ Sci Technol 54:7942–7951 DOI: 10.1021/acs.est.9b07821
Rusina TP, Carlsson P, Vrana B, Smedes F (2017) Equilibrium passive sampling of POP in lipid-rich and lean fish tissue: quality control using performance reference compounds. Environ Sci Technol 51:11250–11257 DOI: 10.1021/acs.est.7b03113
Fu Q et al (2022) Comprehensive screening of polar emerging organic contaminants including PFASs and evaluation of the trophic transfer behavior in a freshwater food web. Water Res 218:118514 DOI: 10.1016/j.watres.2022.118514
Payá P et al (2007) Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 389:1697–1714 DOI: 10.1007/s00216-007-1610-7
Caballero-Casero N et al (2021) Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring. TrAC Trends Anal Chem 136:116201 DOI: 10.1016/j.trac.2021.116201
Alvarez DA et al (2007) Chapter 8 Tool for monitoring hydrophilic contaminants in water: polar organic chemical integrative sampler (POCIS). In: Greenwood R, Mills G, Vrana B (eds) Comprehensive analytical chemistry, vol 48. Elsevier, pp 171–197
Miège C et al (2015) Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment—achievements to date and perspectives. Trends Environ Anal Chem 8:20–26 DOI: 10.1016/j.teac.2015.07.001
European Commission (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policyText with EEA relevance
Pozo K et al (2006) Toward a global network for persistent organic pollutants in air: results from the GAPS study. Environ Sci Technol 40:4867–4873 DOI: 10.1021/es060447t
Lohmann R et al (2017) Aquatic global passive sampling (AQUA-GAPS) revisited: first steps toward a network of networks for monitoring organic contaminants in the aquatic environment. Environ Sci Technol 51:1060–1067 DOI: 10.1021/acs.est.6b05159
ISO (2011) ISO 5667-23:2011, Water quality—Sampling—Part 23: Guidance on passive sampling in surface waters
Vrana B et al (2016) An interlaboratory study on passive sampling of emerging water pollutants. TrAC Trends Anal Chem 76:153–165 DOI: 10.1016/j.trac.2015.10.013
Allan IJ, Harman C, Ranneklev SB, Thomas KV, Grung M (2013) Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ Toxicol Chem 32:1718–1726 DOI: 10.1002/etc.2260
Chung I-Y et al (2017) Nontarget screening using passive air and water sampling with a level II fugacity model to identify unregulated environmental contaminants. J Environ Sci 62:84–91 DOI: 10.1016/j.jes.2017.06.036
Dimitriou-Christidis P et al (2015) GC×GC quantification of priority and emerging nonpolar halogenated micropollutants in all types of wastewater matrices: analysis methodology, chemical occurrence, and partitioning. Environ Sci Technol 49:7914–7925 DOI: 10.1021/es5049122
Hohrenk-Danzouma LL, Vosough M, Merkus VI, Drees F, Schmidt TC (2022) Non-target analysis and chemometric evaluation of a passive sampler monitoring of small streams. Environ Sci Technol 56:5466–5477 DOI: 10.1021/acs.est.1c08014
Schulze B et al (2021) Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Sci Data 8:223 DOI: 10.1038/s41597-021-01002-w
Zhang X, Saini A, Hao C, Harner T (2020) Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. TrAC Trends Anal Chem 132:116052 DOI: 10.1016/j.trac.2020.116052
Bergmann AJ et al (2017) Multi-class chemical exposure in rural Peru using silicone wristbands. J Expo Sci Environ Epidemiol 27:560–568 DOI: 10.1038/jes.2017.12
Harley KG et al (2019) Determinants of pesticide concentrations in silicone wristbands worn by Latina adolescent girls in a California farmworker community: the COSECHA youth participatory action study. Sci Total Environ 652:1022–1029 DOI: 10.1016/j.scitotenv.2018.10.276
Koelmel JP et al (2021) Exploring the external exposome using wearable passive samplers—the China BAPE study. Environ Pollut 270:116228 DOI: 10.1016/j.envpol.2020.116228
Lin EZ, Esenther S, Mascelloni M, Irfan F, Godri Pollitt KJ (2020) The fresh air wristband: a wearable air pollutant sampler. Environ Sci Technol Lett 7:308–314 DOI: 10.1021/acs.estlett.9b00800
O’Connell SG, Kincl LD, Anderson KA (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327–3335 DOI: 10.1021/es405022f
Papazian S et al (2022) Silicone foam for passive sampling and nontarget analysis of air. Environ Sci Technol Lett. 10.1021/acs.estlett.2c00489 DOI: 10.1021/acs.estlett.2c00489
Travis SC, Kordas K, Aga DS (2021) Optimized workflow for unknown screening using gas chromatography high‐resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers. Rapid Commun Mass Spectrom 35
Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (Part I). TrAC Trends Anal Chem 80:641–654 DOI: 10.1016/j.trac.2015.08.015
Gallen C et al (2019) Integrated chemical exposure assessment of coastal green turtle foraging grounds on the Great Barrier Reef. Sci Total Environ 657:401–409 DOI: 10.1016/j.scitotenv.2018.11.322
Samanipour S, Dimitriou-Christidis P, Nabi D, Arey JS (2017) Elevated concentrations of 4-bromobiphenyl and 1,3,5-tribromobenzene found in deep water of lake geneva based on GC×GC-ENCI-TOFMS and GC×GC-μECD. ACS Omega 2:641–652 DOI: 10.1021/acsomega.6b00440
Moschet C, Vermeirssen ELM, Seiz R, Pfefferli H, Hollender J (2014) Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res 66:411–422 DOI: 10.1016/j.watres.2014.08.032
Fauvelle V et al (2017) Dealing with flow effects on the uptake of polar compounds by passive samplers. Environ Sci Technol 51:2536–2537 DOI: 10.1021/acs.est.7b00558
McMaster MC (2007) HPLC: a practical user’s guide, 2nd Edition, Wiley
Neue UD (2008) Peak capacity in unidimensional chromatography. J Chromatogr A 1184:107–130 DOI: 10.1016/j.chroma.2007.11.113
Guo Y, Srinivasan S, Gaiki S (2009) Evaluation of the peak capacity of various RP-columns for small molecule compounds in gradient elution. Chromatographia 70:1045 DOI: 10.1365/s10337-009-1288-4
Tanaka N, McCalley DV (2016) Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal Chem 88:279–298 DOI: 10.1021/acs.analchem.5b04093
Jandera P (2006) Can the theory of gradient liquid chromatography be useful in solving practical problems? J Chromatogr A 1126:195–218 DOI: 10.1016/j.chroma.2006.04.094
Méndez A, Bosch E, Rosés M, Neue UD (2003) Comparison of the acidity of residual silanol groups in several liquid chromatography columns. J Chromatogr A 986:33–44 DOI: 10.1016/S0021-9673(02)01899-X
McCalley DV (2010) The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations. J Chromatogr A 1217:858–880 DOI: 10.1016/j.chroma.2009.11.068
O’Sullivan GP, Scully NM, Glennon JD (2010) Polar-embedded and polar-endcapped stationary phases for LC. Anal Lett 43:1609–1629 DOI: 10.1080/00032711003653973
Majors RE (2013) The top 10 HPLC and UHPLC column myths: part 1. LC-GC Eur 26:584–592
Tian Z et al (2020) Suspect and nontarget screening for contaminants of emerging concern in an urban estuary. Environ Sci Technol 54:889–901 DOI: 10.1021/acs.est.9b06126
Chiaia-Hernandez AC, Krauss M, Hollender J (2013) Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environ Sci Technol 47:976–986 DOI: 10.1021/es303888v
Hoffman NE, Pan S-L, Rustum AM (1989) Injection of eluites in solvents stronger than the mobile phase in reversed-phase liquid chromatography. J Chromatogr A 465:189–200 DOI: 10.1016/S0021-9673(01)92657-3
Stoll DR, Lauer TJ (2020) Effects of buffer capacity in reversed-phase liquid chromatography, part i: relationship between the sample- and mobile-phase buffers. LC-GC N Am 38:10–15
Reemtsma T et al (2016) Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol 50:10308–10315 DOI: 10.1021/acs.est.6b03338
Castro V et al (2021) Combination of different chromatographic and sampling modes for high-resolution mass spectrometric screening of organic microcontaminants in water. Anal Bioanal Chem 413:5607–5618 DOI: 10.1007/s00216-021-03226-6
Knoll S, Rösch T, Huhn C (2020) Trends in sample preparation and separation methods for the analysis of very polar and ionic compounds in environmental water and biota samples. Anal Bioanal Chem 412:6149–6165 DOI: 10.1007/s00216-020-02811-5
Zahn D, Neuwald IJ, Knepper TP (2020) Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives. Anal Bioanal Chem 412:4763–4784 DOI: 10.1007/s00216-020-02520-z
García A, Godzien J, López-Gonzálvez Á, Barbas C (2016) Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 9:99–130 DOI: 10.4155/bio-2016-0216
Höcker O, Bader T, Schmidt TC, Schulz W, Neusüß C (2020) Enrichment-free analysis of anionic micropollutants in the sub-ppb range in drinking water by capillary electrophoresis-high resolution mass spectrometry. Anal Bioanal Chem 412:4857–4865 DOI: 10.1007/s00216-020-02525-8
Wouters S, Haddad PR, Eeltink S (2017) System design and emerging hardware technology for ion chromatography. Chromatographia 80:689–704 DOI: 10.1007/s10337-016-3184-z
Gallidabino MD, Hamdan L, Murphy B, Barron LP (2018) Suspect screening of halogenated carboxylic acids in drinking water using ion exchange chromatography—high resolution (Orbitrap) mass spectrometry (IC-HRMS). Talanta 178:57–68 DOI: 10.1016/j.talanta.2017.08.092
Schorr J et al (2023) Closing the gap: Ion chromatography coupled to high-resolution mass spectrometry to trace highly polar anionic substances in groundwater. Sci Total Environ. 10.1016/j.scitotenv.2023.164170 DOI: 10.1016/j.scitotenv.2023.164170
Karu N, Dicinoski GW, Hanna-Brown M, Haddad PR (2012) Determination of pharmaceutically related compounds by suppressed ion chromatography: II. Interactions of analytes with the suppressor. J Chromatogr A 1224:35–42 DOI: 10.1016/j.chroma.2011.12.022
Lesellier E, West C (2015) The many faces of packed column supercritical fluid chromatography—a critical review. Ed Choice IX 1382:2–46
Pilařová V, Plachká K, Khalikova MA, Svec F, Nováková L (2019) Recent developments in supercritical fluid chromatography—mass spectrometry: is it a viable option for analysis of complex samples? TrAC Trends Anal Chem 112:212–225 DOI: 10.1016/j.trac.2018.12.023
Bieber S, Greco G, Grosse S, Letzel T (2017) RPLC-HILIC and SFC with mass spectrometry: polarity-extended organic molecule screening in environmental (water) samples. Anal Chem 89:7907–7914 DOI: 10.1021/acs.analchem.7b00859
Tisler S, Tüchsen PL, Christensen JH (2022) Non-target screening of micropollutants and transformation products for assessing AOP-BAC treatment in groundwater. Environ Pollut 309:119758 DOI: 10.1016/j.envpol.2022.119758
Tisler S, Savvidou P, Jørgensen MB, Castro M, Christensen JH (2023) Supercritical fluid chromatography coupled to high-resolution mass spectrometry reveals persistent mobile organic compounds with unknown toxicity in wastewater effluents. Environ Sci Technol. 10.1021/acs.est.3c00120 DOI: 10.1021/acs.est.3c00120
Jiang P, Lucy CA (2016) Coupling normal phase liquid chromatography with electrospray ionization mass spectrometry: strategies and applications. Anal Methods 8:6478–6488 DOI: 10.1039/C6AY01419D
Pesek JJ, Matyska MT, Boysen RI, Yang Y, Hearn MTW (2013) Aqueous normal-phase chromatography using silica-hydride-based stationary phases. TrAC Trends Anal Chem 42:64–73 DOI: 10.1016/j.trac.2012.09.016
Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196 DOI: 10.1016/S0021-9673(00)96972-3
Gago-Ferrero P et al (2015) Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol 49:12333–12341 DOI: 10.1021/acs.est.5b03454
Nováková L, Havlíková L, Vlčková H (2014) Hydrophilic interaction chromatography of polar and ionizable compounds by UHPLC. TrAC Trends Anal Chem 63:55–64 DOI: 10.1016/j.trac.2014.08.004
McCalley DV (2017) Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A 1523:49–71 DOI: 10.1016/j.chroma.2017.06.026
Lämmerhofer M et al (2008) Mixed-mode ion-exchangers and their comparative chromatographic characterization in reversed-phase and hydrophilic interaction chromatography elution modes. J Sep Sci 31:2572–2588 DOI: 10.1002/jssc.200800178
Yang Y, Geng X (2011) Mixed-mode chromatography and its applications to biopolymers. J Chromatogr A 1218:8813–8825 DOI: 10.1016/j.chroma.2011.10.009
Montes R, Rodil R, Cela R, Quintana JB (2019) Determination of persistent and mobile organic contaminants (PMOCs) in water by mixed-mode liquid chromatography-tandem mass spectrometry. Anal Chem 91:5176–5183 DOI: 10.1021/acs.analchem.8b05792
Schulze B, Bader T, Seitz W, Winzenbacher R (2020) Column bleed in the analysis of highly polar substances: an overlooked aspect in HRMS. Anal Bioanal Chem 412:4837–4847 DOI: 10.1007/s00216-020-02387-0
Müller K, Zahn D, Frömel T, Knepper TP (2020) Matrix effects in the analysis of polar organic water contaminants with HILIC-ESI-MS. Anal Bioanal Chem 412:4867–4879 DOI: 10.1007/s00216-020-02548-1
Jandera P (2008) Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. J Sep Sci 31:1421–1437 DOI: 10.1002/jssc.200800051
Muehlwald S, Rohn S, Buchner N (2019) Evaluating the applicability of a two-dimensional liquid chromatography system for a pesticide multi-screening method. J Chromatogr A 1599:95–107 DOI: 10.1016/j.chroma.2019.04.003
Ouyang X et al (2015) Comprehensive two-dimensional liquid chromatography coupled to high resolution time of flight mass spectrometry for chemical characterization of sewage treatment plant effluents. J Chromatogr A 1380:139–145 DOI: 10.1016/j.chroma.2014.12.075
Hernández F et al (2019) The role of analytical chemistry in exposure science: focus on the aquatic environment. Chemosphere 222:564–583 DOI: 10.1016/j.chemosphere.2019.01.118
Milman BL, Zhurkovich IK (2017) The chemical space for non-target analysis. TrAC Trends Anal Chem 97:179–187 DOI: 10.1016/j.trac.2017.09.013
Yamashita M, Fenn JB (1984) Electrospray ion source. Another variation on the free-jet theme. J Phys Chem 88:4451–4459 DOI: 10.1021/j150664a002
Mairinger T, Loos M, Hollender J (2021) Characterization of water-soluble synthetic polymeric substances in wastewater using LC-HRMS/MS. Water Res 190:116745 DOI: 10.1016/j.watres.2020.116745
Gruendling T, Weidner S, Falkenhagen J, Barner-Kowollik C (2010) Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym Chem 1:599 DOI: 10.1039/b9py00347a
Terrier P, Desmazières B, Tortajada J, Buchmann W (2011) APCI/APPI for synthetic polymer analysis. Mass Spectrom Rev 30:854–874 DOI: 10.1002/mas.20302
Trawiński J, Skibiński R, Komsta Ł (2017) Comparison of ESI and APCI sources in Q-TOF mass spectrometer in photodegradation study of selected psychotropic drugs. Acta Chromatogr 29:161–172 DOI: 10.1556/1326.2017.29.2.2
Tokumura M et al (2018) Methods for the analysis of organophosphorus flame retardants—comparison of GC-EI-MS, GC-NCI-MS, LC-ESI-MS/MS, and LC-APCI-MS/MS. J Environ Sci Health Part A 53:475–481 DOI: 10.1080/10934529.2017.1410419
Singh RR et al (2020) Expanded coverage of non-targeted LC-HRMS using atmospheric pressure chemical ionization: a case study with ENTACT mixtures. Anal Bioanal Chem 412:4931–4939 DOI: 10.1007/s00216-020-02716-3
Robb DB, Covey TR, Bruins AP (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography−mass spectrometry. Anal Chem 72:3653–3659 DOI: 10.1021/ac0001636
Laaniste A, Leito I, Kruve A (2019) ESI outcompetes other ion sources in LC/MS trace analysis. Anal Bioanal Chem 411:3533–3542 DOI: 10.1007/s00216-019-01832-z
Gallampois CMJ et al (2015) Multicriteria approach to select polyaromatic river mutagen candidates. Environ Sci Technol 49:2959–2968 DOI: 10.1021/es503640k
Bahureksa W et al (2022) Improved dynamic range, resolving power, and sensitivity achievable with FT-ICR mass spectrometry at 21 T reveals the hidden complexity of natural organic matter. Anal Chem 94:11382–11389 DOI: 10.1021/acs.analchem.2c02377
Postigo C, Richardson SD (2021) Chapter One—non-target screening and novel methods based on mass spectrometry detection for identification of unknown disinfection byproducts. In: Manasfi T, Boudenne J-L (eds) Comprehensive analytical chemistry, vol 92. Elsevier, pp 1–29
Chambers MC et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920 DOI: 10.1038/nbt.2377
Oberacher H et al (2018) Annotating nontargeted LC-HRMS/MS data with two complementary tandem mass spectral libraries. Metabolites 9:3 DOI: 10.3390/metabo9010003
Oberacher H et al (2020) A European proposal for quality control and quality assurance of tandem mass spectral libraries. Environ Sci Eur 32:43 DOI: 10.1186/s12302-020-00314-9
Kiefer K, Du L, Singer H, Hollender J (2021) Identification of LC-HRMS nontarget signals in groundwater after source related prioritization. Water Res 196:116994 DOI: 10.1016/j.watres.2021.116994
Gravert TKO, Vuaille J, Magid J, Hansen M (2021) Non-target analysis of organic waste amended agricultural soils: characterization of added organic pollution. Chemosphere 280:130582 DOI: 10.1016/j.chemosphere.2021.130582
Gillet LC et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717 DOI: 10.1074/mcp.O111.016717
Feuerstein ML, Kurulugama RT, Hann S, Causon T (2021) Novel acquisition strategies for metabolomics using drift tube ion mobility-quadrupole resolved all ions time-of-flight mass spectrometry (IM-QRAI-TOFMS). Anal Chim Acta 1163:338508 DOI: 10.1016/j.aca.2021.338508
Mairinger T et al (2019) Rapid screening methods for yeast sub-metabolome analysis with a high-resolution ion mobility quadrupole time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 33:66–74 DOI: 10.1002/rcm.8420
Huber C et al (2022) In silico deconjugation of glucuronide conjugates enhances tandem mass spectra library annotation of human samples. Anal Bioanal Chem 414:2629–2640 DOI: 10.1007/s00216-022-03899-7
Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W (2002) Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol 15:1281–1287 DOI: 10.1021/tx025548t
Meekel N, Vughs D, Béen F, Brunner AM (2021) Online prioritization of toxic compounds in water samples through intelligent HRMS data acquisition. Anal Chem 93:5071–5080 DOI: 10.1021/acs.analchem.0c04473
Haglund P, Rebryk A (2022) Biomagnification and temporal trends of new and emerging dechloranes and related transformation products in Baltic Sea Biota. Environ Sci Technol Lett 9:406–412 DOI: 10.1021/acs.estlett.2c00171
Lee S, Kim K, Jeon J, Moon H-B (2019) Optimization of suspect and non-target analytical methods using GC/TOF for prioritization of emerging contaminants in the Arctic environment. Ecotoxicol Environ Saf 181:11–17 DOI: 10.1016/j.ecoenv.2019.05.070
Yang L et al (2020) Non-target screening of organic pollutants and target analysis of halogenated polycyclic aromatic hydrocarbons in the atmosphere around metallurgical plants by high-resolution GC/Q-TOF-MS. Environ Sci Eur 32:96 DOI: 10.1186/s12302-020-00376-9
Kováts E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 41:1915–1932 DOI: 10.1002/hlca.19580410703
van Den Dool H, Kratz P (1963) A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A 11:463–471 DOI: 10.1016/S0021-9673(01)80947-X
Lee ML, Vassilaros DL, White CM (1979) Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Anal Chem 51:768–773 DOI: 10.1021/ac50042a043
Liu Z, Phillips JB (1991) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29:227–231 DOI: 10.1093/chromsci/29.6.227
Lübeck JS, Alexandrino GL, Christensen JH (2020) GC × GC–HRMS nontarget fingerprinting of organic micropollutants in urban freshwater sediments. Environ Sci Eur 32:78 DOI: 10.1186/s12302-020-00353-2
Schymanski EL et al (2012) Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties. Anal Chem 84:3287–3295 DOI: 10.1021/ac203471y
Amirav A, Danon A (1990) Electron impact mass spectrometry in supersonic molecular beams. Int J Mass Spectrom Ion Process 97:107–113 DOI: 10.1016/0168-1176(90)85042-Z
Giri A et al (2019) Compositional elucidation of heavy petroleum base oil by GC × GC-EI/PI/CI/FI-TOFMS. J Mass Spectrom 54:148–157 DOI: 10.1002/jms.4319
Li X et al (2021) Nontargeted screening using gas chromatography-atmospheric pressure ionization mass spectrometry: recent trends and emerging potential. Molecules 26:6911 DOI: 10.3390/molecules26226911
Abate S, Ahn YG, Kind T, Cataldi TRI, Fiehn O (2010) Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Commun Mass Spectrom 24:1172–1180 DOI: 10.1002/rcm.4482
Dubois LM et al (2017) Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood. J Chromatogr A 1501:117–127 DOI: 10.1016/j.chroma.2017.04.026
Buser HR (1986) Selective detection of brominated aromatic compounds using gas chromatography/negative chemical ionization mass spectrometry. Anal Chem 58:2913–2919 DOI: 10.1021/ac00127a005
Li D-X, Gan L, Bronja A, Schmitz OJ (2015) Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review. Anal Chim Acta 891:43–61 DOI: 10.1016/j.aca.2015.08.002
Strehmel N, Kopka J, Scheel D, Böttcher C (2014) Annotating unknown components from GC/EI-MS-based metabolite profiling experiments using GC/APCI(+)-QTOFMS. Metabolomics 10:324–336 DOI: 10.1007/s11306-013-0569-y
Zheng X et al (2018) Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 1037:265–273 DOI: 10.1016/j.aca.2018.02.054
Portolés T, Mol JGJ, Sancho JV, Hernández F (2014) Use of electron ionization and atmospheric pressure chemical ionization in gas chromatography coupled to time-of-flight mass spectrometry for screening and identification of organic pollutants in waters. J Chromatogr A 1339:145–153 DOI: 10.1016/j.chroma.2014.03.001
Izquierdo-Sandoval D et al (2022) Benefits of ion mobility separation in GC-APCI-HRMS screening: from the construction of a CCS library to the application to real-world samples. Anal Chem 94:9040–9047 DOI: 10.1021/acs.analchem.2c01118
Pintado-Herrera MG, González-Mazo E, Lara-Martín PA (2014) Atmospheric pressure gas chromatography–time-of-flight-mass spectrometry (APGC–ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE). Anal Chim Acta 851:1–13 DOI: 10.1016/j.aca.2014.05.030
Megson D, Robson M, Jobst KJ, Helm PA, Reiner EJ (2016) Determination of halogenated flame retardants using gas chromatography with atmospheric pressure chemical ionization (APCI) and a high-resolution quadrupole time-of-flight mass spectrometer (HRqTOFMS). Anal Chem 88:11406–11411 DOI: 10.1021/acs.analchem.6b01550
Portolés T et al (2015) Novel analytical approach for brominated flame retardants based on the use of gas chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry with emphasis in highly brominated congeners. Anal Chem 87:9892–9899 DOI: 10.1021/acs.analchem.5b02378
MacNeil A et al (2022) Gas chromatography-(Cyclic) ion mobility mass spectrometry: a novel platform for the discovery of unknown per-/polyfluoroalkyl substances. Anal Chem 94:11096–11103 DOI: 10.1021/acs.analchem.2c02325
van Bavel B et al (2015) Atmospheric-pressure chemical ionization tandem mass spectrometry (APGC/MS/MS) an alternative to high-resolution mass spectrometry (HRGC/HRMS) for the determination of dioxins. Anal Chem 87:9047–9053 DOI: 10.1021/acs.analchem.5b02264
Regueiro J, Negreira N, Hannisdal R, Berntssen MHG (2017) Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry. Food Control 78:116–125 DOI: 10.1016/j.foodcont.2017.02.053
Regueiro J, Negreira N, Berntssen MHG (2016) Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal Chem 88:11169–11177 DOI: 10.1021/acs.analchem.6b03381
Ewing MA, Glover MS, Clemmer DE (2016) Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 1439:3–25 DOI: 10.1016/j.chroma.2015.10.080
May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436 DOI: 10.1021/ac504720m
Gabelica V et al (2019) Recommendations for reporting ion mobility Mass Spectrometry measurements. Mass Spectrom Rev 38:291–320 DOI: 10.1002/mas.21585
Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Russell DH (2020) Native IM-Orbitrap MS: resolving what was hidden. TrAC Trends Anal Chem 124:115533 DOI: 10.1016/j.trac.2019.05.035
Bijlsma L, Berntssen MHG, Merel S (2019) A refined nontarget workflow for the investigation of metabolites through the prioritization by in silico prediction tools. Anal Chem 91:6321–6328 DOI: 10.1021/acs.analchem.9b01218
Menger F et al (2022) Enhancing spectral quality in complex environmental matrices: supporting suspect and non-target screening in zebra mussels with ion mobility. Environ Int 170:107585 DOI: 10.1016/j.envint.2022.107585
Hinnenkamp V et al (2018) Comparison of CCS values determined by traveling wave ion mobility mass spectrometry and drift tube ion mobility mass spectrometry. Anal Chem 90:12042–12050 DOI: 10.1021/acs.analchem.8b02711
Metz TO et al (2017) Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go? Bioanalysis 9:81–98 DOI: 10.4155/bio-2016-0244
Celma A et al (2020) Improving target and suspect screening high-resolution mass spectrometry workflows in environmental analysis by ion mobility separation. Environ Sci Technol 54:15120–15131 DOI: 10.1021/acs.est.0c05713
Hernández-Mesa M, Le Bizec B, Monteau F, García-Campaña AM, Dervilly-Pinel G (2018) Collision Cross Section (CCS) database: an additional measure to characterize steroids. Anal Chem 90:4616–4625 DOI: 10.1021/acs.analchem.7b05117
Feuerstein ML et al (2022) Critical evaluation of the role of external calibration strategies for IM-MS. Anal Bioanal Chem 414:7483–7493 DOI: 10.1007/s00216-022-04263-5
Belova L et al (2022) Revealing the differences in collision cross section values of small organic molecules acquired by different instrumental designs and prediction models. Anal Chim Acta 1229:340361 DOI: 10.1016/j.aca.2022.340361
Bijlsma L et al (2017) Prediction of collision cross-section values for small molecules: application to pesticide residue analysis. Anal Chem 89:6583–6589 DOI: 10.1021/acs.analchem.7b00741
Ross DH, Cho JH, Xu L (2020) Breaking down structural diversity for comprehensive prediction of ion-neutral collision cross sections. Anal Chem 92:4548–4557 DOI: 10.1021/acs.analchem.9b05772
Zhou Z, Shen X, Tu J, Zhu Z-J (2016) Large-scale prediction of collision cross-section values for metabolites in ion mobility-mass spectrometry. Anal Chem 88:11084–11091 DOI: 10.1021/acs.analchem.6b03091
Dodds JN, Hopkins ZR, Knappe DRU, Baker ES (2020) Rapid characterization of per- and polyfluoroalkyl substances (PFAS) by ion mobility spectrometry-mass spectrometry (IMS-MS). Anal Chem 92:4427–4435 DOI: 10.1021/acs.analchem.9b05364
Hinnenkamp V, Balsaa P, Schmidt TC (2019) Quantitative screening and prioritization based on UPLC-IM-Q-TOF-MS as an alternative water sample monitoring strategy. Anal Bioanal Chem 411:6101–6110 DOI: 10.1007/s00216-019-01994-w
Helmus R et al (2022) patRoon 2.0: improved non-target analysis workflows including automated transformation product screening. J Open Source Softw 7:4029 DOI: 10.21105/joss.04029
Helmus R, ter Laak TL, van Wezel AP, de Voogt P, Schymanski EL (2021) patRoon: open source software platform for environmental mass spectrometry based non-target screening. J Cheminformatics 13:1 DOI: 10.1186/s13321-020-00477-w
Tsugawa H et al (2020) A lipidome atlas in MS-DIAL 4. Nat Biotechnol 38:1159–1163 DOI: 10.1038/s41587-020-0531-2
Tsugawa H et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526 DOI: 10.1038/nmeth.3393
Loos M, Schmitt U, Schollee J (2018) Blosloos/Envimass: Envimass Version 3.5. 10.5281/ZENODO.1213098
Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:395 DOI: 10.1186/1471-2105-11-395
Schmid R et al (2023) Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 10.1038/s41587-023-01690-2 DOI: 10.1038/s41587-023-01690-2
Delabriere A, Warmer P, Brennsteiner V, Zamboni N (2021) SLAW: a scalable and self-optimizing processing workflow for untargeted LC-MS. Anal Chem 93:15024–15032
Feraud M et al (2023) InSpectra—a platform for identifying emerging chemical threats. J Hazard Mater. 10.1016/j.jhazmat.2023.131486 DOI: 10.1016/j.jhazmat.2023.131486
Koelmel JP et al (2022) FluoroMatch 2.0—making automated and comprehensive non-targeted PFAS annotation a reality. Anal Bioanal Chem 414:1201–1215 DOI: 10.1007/s00216-021-03392-7
Schmid R et al (2023) Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41:447–449 DOI: 10.1038/s41587-023-01690-2
Samanipour S, O’Brien JW, Reid MJ, Thomas KV (2019) Self adjusting algorithm for the nontargeted feature detection of high resolution mass spectrometry coupled with liquid chromatography profile data. Anal Chem 91:10800–10807 DOI: 10.1021/acs.analchem.9b02422
Reaser BC, Wright BW, Synovec RE (2017) Using receiver operating characteristic curves to optimize discovery-based software with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Anal Chem 89:3606–3612 DOI: 10.1021/acs.analchem.6b04991
Reichenbach SE, Ni M, Kottapalli V, Visvanathan A (2004) Information technologies for comprehensive two-dimensional gas chromatography. Chemom Intell Lab Syst 71:107–120 DOI: 10.1016/j.chemolab.2003.12.009
Pérez-Cova M, Bedia C, Stoll DR, Tauler R, Jaumot J (2021) MSroi: a pre-processing tool for mass spectrometry-based studies. Chemom Intell Lab Syst 215:104333 DOI: 10.1016/j.chemolab.2021.104333
Kuhl C, Tautenhahn R, Böttcher C, Larson TR, Neumann S (2012) CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem 84:283–289 DOI: 10.1021/ac202450g
Loos M (2016) nontarget: Detecting Isotope, Adduct and Homologue Relations in LC-MS Data
Loos M, Gerber C, Corona F, Hollender J, Singer H (2015) Accelerated isotope fine structure calculation using pruned transition trees. Anal Chem 87:5738–5744 DOI: 10.1021/acs.analchem.5b00941
Loos M, Gerber C, Singer H (2013) enviPat: isotope pattern calculator. https://www.envipat.eawag.ch/
van Herwerden D et al (2022) Naive Bayes classification model for isotopologue detection in LC-HRMS data. Chemom Intell Lab Syst 223:104515 DOI: 10.1016/j.chemolab.2022.104515
Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014) RAMClust: a novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal Chem 86:6812–6817 DOI: 10.1021/ac501530d
Meringer M (2023) GenForm. SourceForge https://sourceforge.net/projects/genform/
Meringer M, Reinker S, Zhang J, Muller A (2011) MS/MS data improves automated determination of molecular formulas by mass spectrometry. MATCH Commun Math Comput Chem 65:259–290
Stravs M, Schymanski EL, Neumann S, Müller E (2023) RMassBank. BioConductor https://bioconductor.org/packages/RMassBank. 10.18129/B9.BIOC.RMASSBANK
Stravs MA, Schymanski EL, Singer HP, Hollender J (2013) Automatic recalibration and processing of tandem mass spectra using formula annotation: recalibration and processing of MS/MS spectra. J Mass Spectrom 48:89–99 DOI: 10.1002/jms.3131
Loos M, Singer H (2017) Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data. J Cheminformatics 9:12 DOI: 10.1186/s13321-017-0197-z
Schymanski EL et al (2014) Strategies to Characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol 48:1811–1818 DOI: 10.1021/es4044374
Zweigle J, Bugsel B, Zwiener C (2023) Efficient PFAS prioritization in non-target HRMS data: systematic evaluation of the novel MD/Cm/C approach. Anal Bioanal Chem 415:1791–1801
Zweigle J, Bugsel B, Zwiener C (2022) FindPFΔS: non-target screening for PFAS─comprehensive data mining for MS 2 fragment mass differences. Anal Chem 94:10788–10796 DOI: 10.1021/acs.analchem.2c01521
Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171–196 DOI: 10.1007/s11306-006-0037-z
Kiefer K, Müller A, Singer H, Hollender J (2019) New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res 165:114972 DOI: 10.1016/j.watres.2019.114972
Schollée JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015) Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic. Anal Chem 87:12121–12129 DOI: 10.1021/acs.analchem.5b02905
Brunner AM, Dingemans MML, Baken KA, van Wezel AP (2019) Prioritizing anthropogenic chemicals in drinking water and sources through combined use of mass spectrometry and ToxCast toxicity data. J Hazard Mater 364:332–338 DOI: 10.1016/j.jhazmat.2018.10.044
Gago-Ferrero P, Krettek A, Fischer S, Wiberg K, Ahrens L (2018) Suspect screening and regulatory databases: a powerful combination to identify emerging micropollutants. Environ Sci Technol 52:6881–6894 DOI: 10.1021/acs.est.7b06598
Krauss M, Hug C, Bloch R, Schulze T, Brack W (2019) Prioritising site-specific micropollutants in surface water from LC-HRMS non-target screening data using a rarity score. Environ Sci Eur 31:45 DOI: 10.1186/s12302-019-0231-z
Alygizakis NA, Gago-Ferrero P, Hollender J, Thomaidis NS (2019) Untargeted time-pattern analysis of LC-HRMS data to detect spills and compounds with high fluctuation in influent wastewater. J Hazard Mater 361:19–29 DOI: 10.1016/j.jhazmat.2018.08.073
Anliker S et al (2020) Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution mass spectrometry data. Environ Sci Technol 54:4110–4120 DOI: 10.1021/acs.est.9b07085
Schlüsener MP, Kunkel U, Ternes TA (2015) Quaternary triphenylphosphonium compounds: a new class of environmental pollutants. Environ Sci Technol 49:14282–14291 DOI: 10.1021/acs.est.5b03926
García RA et al (2019) Suspect screening of hydrocarbon surfactants in AFFFs and AFFF-contaminated groundwater by high-resolution mass spectrometry. Environ Sci Technol 53:8068–8077 DOI: 10.1021/acs.est.9b01895
Merel S, Lege S, Yanez Heras JE, Zwiener C (2017) Assessment of N-oxide formation during wastewater ozonation. Environ Sci Technol 51:410–417 DOI: 10.1021/acs.est.6b02373
Zweigle J, Bugsel B, Röhler K, Haluska AA, Zwiener C (2023) PFAS-contaminated soil site in germany: nontarget screening before and after direct TOP assay by kendrick mass defect and FindPFΔS. Environ Sci Technol 57:6647–6655 DOI: 10.1021/acs.est.2c07969
Liu Y, Pereira ADS, Martin JW (2015) Discovery of C5–C17 poly- and perfluoroalkyl substances in water by in-line SPE-HPLC-Orbitrap with in-source fragmentation flagging. Anal Chem 87:4260–4268 DOI: 10.1021/acs.analchem.5b00039
Muz M et al (2017) Nontargeted detection and identification of (aromatic) amines in environmental samples based on diagnostic derivatization and LC-high resolution mass spectrometry. Chemosphere 166:300–310 DOI: 10.1016/j.chemosphere.2016.09.138
Zonja B, Delgado A, Pérez S, Barceló D (2015) LC-HRMS suspect screening for detection-based prioritization of iodinated contrast media photodegradates in surface waters. Environ Sci Technol 49:3464–3472 DOI: 10.1021/es505250q
Tue NM et al (2021) Nontarget screening of organohalogen compounds in the liver of wild birds from Osaka, Japan: specific accumulation of highly chlorinated pop homologues in raptors. Environ Sci Technol 55:8691–8699 DOI: 10.1021/acs.est.1c00357
Jonker W et al (2015) Rapid activity-directed screening of estrogens by parallel coupling of liquid chromatography with a functional gene reporter assay and mass spectrometry. J Chromatogr A 1406:165–174 DOI: 10.1016/j.chroma.2015.06.012
Muschket M et al (2018) Identification of unknown antiandrogenic compounds in surface waters by effect-directed analysis (EDA) using a parallel fractionation approach. Environ Sci Technol 52:288–297 DOI: 10.1021/acs.est.7b04994
Arturi K, Hollender J (2023) Machine learning-based hazard-driven prioritization of features in nontarget screening of environmental high-resolution mass spectrometry data. Environ Sci Technol. 10.1021/acs.est.3c00304 DOI: 10.1021/acs.est.3c00304
Peets P et al (2022) MS2Tox machine learning tool for predicting the ecotoxicity of unidentified chemicals in water by nontarget LC-HRMS. Environ Sci Technol 56:15508–15517 DOI: 10.1021/acs.est.2c02536
Schollée JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018) Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments. Water Res 142:267–278 DOI: 10.1016/j.watres.2018.05.045
Beretsou VG et al (2016) Identification of biotransformation products of citalopram formed in activated sludge. Water Res 103:205–214 DOI: 10.1016/j.watres.2016.07.029
Bijlsma L et al (2013) Investigation of degradation products of cocaine and benzoylecgonine in the aquatic environment. Sci Total Environ 443:200–208 DOI: 10.1016/j.scitotenv.2012.11.006
Boix C, Ibáñez M, Bijlsma L, Sancho JV, Hernández F (2014) Investigation of cannabis biomarkers and transformation products in waters by liquid chromatography coupled to time of flight and triple quadrupole mass spectrometry. Chemosphere 99:64–71 DOI: 10.1016/j.chemosphere.2013.10.007
Brunner AM et al (2019) Monitoring transformation product formation in the drinking water treatments rapid sand filtration and ozonation. Chemosphere 214:801–811 DOI: 10.1016/j.chemosphere.2018.09.140
Borowska E et al (2016) Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: kinetics and formation of transformation products. Water Res. 10.1016/j.watres.2016.02.020 DOI: 10.1016/j.watres.2016.02.020
Kolkman A, Martijn BJ, Vughs D, Baken KA, van Wezel AP (2015) Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry. Environ Sci Technol 49:4458–4465 DOI: 10.1021/es506063h
Schollée JE, Schymanski EL, Hollender J (2016) Statistical Approaches for LC-HRMS Data To Characterize, Prioritize, and Identify Transformation Products from Water Treatment Processes. in Assessing Transformation Products of Chemicals by Non-Target and Suspect Screening—Strategies and Workflows Volume 1 vol. 1241 45–65 (American Chemical Society)
Sanchís J, Jaén-Gil A, Gago-Ferrero P, Munthali E, Farré MJ (2020) Characterization of organic matter by HRMS in surface waters: effects of chlorination on molecular fingerprints and correlation with DBP formation potential. Water Res 176:115743 DOI: 10.1016/j.watres.2020.115743
Verkh Y, Rozman M, Petrovic M (2018) A non-targeted high-resolution mass spectrometry data analysis of dissolved organic matter in wastewater treatment. Chemosphere 200:397–404 DOI: 10.1016/j.chemosphere.2018.02.095
Mohammed Taha H et al (2022) The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. Environ Sci Eur 34:104 DOI: 10.1186/s12302-022-00680-6
Moschet C, Piazzoli A, Singer H, Hollender J (2013) Alleviating the reference standard dilemma using a systematic exact mass suspect screening approach with liquid chromatography-high resolution mass spectrometry. Anal Chem 85:10312–10320 DOI: 10.1021/ac4021598
Singer HP, Wössner AE, McArdell CS, Fenner K (2016) Rapid screening for exposure to “Non-Target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environ Sci Technol 50:6698–6707 DOI: 10.1021/acs.est.5b03332
Letzel T, Grosse S, Sengel M (2017) S2 | STOFFIDENT | HSWT/LfU STOFF-IDENT Database of Water-Relevant Substances. Zenodo vol. 10.5281/zenodo.2621452
Sjerps RMA, Vughs D, van Leerdam JA, ter Laak TL, van Wezel AP (2016) Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res 93:254–264 DOI: 10.1016/j.watres.2016.02.034
Williams AJ et al (2017) The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminformatics 9:61 DOI: 10.1186/s13321-017-0247-6
Kim S et al (2022) PubChem 2023 update. Nucleic Acids Res. 10.1093/nar/gkac956 DOI: 10.1093/nar/gkac956
NORMAN Association, Aalizadeh R, Alygizakis N, Schymanski E, Slobodnik J (2018) S0 | SUSDAT | Merged NORMAN Suspect List: SusDat. Zenodo vol. https://doi.org/10.5281/zenodo.2664078
Meijer J et al (2021) An annotation database for chemicals of emerging concern in exposome research. Environ Int 152:106511 DOI: 10.1016/j.envint.2021.106511
Meijer J et al (2020) S71 | CECSCREEN | HBM4EU CECscreen: Screening List for Chemicals of Emerging Concern Plus Metadata and Predicted Phase 1 Metabolites. https://doi.org/10.5281/zenodo.3957497
US EPA O (2015) EPI SuiteTM-Estimation Program Interface. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
Chemaxon (2023) Chemaxon—Chem-bioinformatics software for the next generation of scientists. https://chemaxon.com
Dürig W et al (2019) Development of a suspect screening prioritization tool for organic compounds in water and biota. Chemosphere 222:904–912 DOI: 10.1016/j.chemosphere.2019.02.021
Fischer S (2019) S39 | KEMIWWSUS | Wastewater Suspect List based on Swedish Product Data. Zenodo vol. 10.5281/zenodo.2653566
Fischer S (2017) S17 | KEMIMARKET | KEMI Market List. Zenodo vol. 10.5281/zenodo.2628787
Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminformatics 8:1–16 DOI: 10.1186/s13321-016-0115-9
McEachran AD et al (2018) “MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminformatics 10:45 DOI: 10.1186/s13321-018-0299-2
NCBI/NLM/NIH (2023) PubChem Identifier Exchange Service (ID Exchange). https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi
Schymanski EL et al (2021) Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminformatics 13:19 DOI: 10.1186/s13321-021-00489-0
Lai A et al (2022) The next frontier of environmental unknowns: substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). Environ Sci Technol 56:7448–7466 DOI: 10.1021/acs.est.2c00321
Wicker J et al (2016) enviPath—the environmental contaminant biotransformation pathway resource. Nucleic Acids Res 44:D502–D508 DOI: 10.1093/nar/gkv1229
Djoumbou-Feunang Y et al (2019) BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification. J Cheminformatics 11:2 DOI: 10.1186/s13321-018-0324-5
Schymanski EL, Bolton EE (2022) FAIR-ifying the exposome journal: templates for chemical structures and transformations. Exposome 2:osab006 DOI: 10.1093/exposome/osab006
Schymanski EL, Bolton EE (2021) FAIR chemical structures in the Journal of Cheminformatics. J Cheminformatics 13:50 DOI: 10.1186/s13321-021-00520-4
United States Environmental Protection Agency (2023) CompTox Batch Search. https://comptox.epa.gov/dashboard/dsstoxdb/batch_search
Schymanski EL et al (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098 DOI: 10.1021/es5002105
Kind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8:105–124 DOI: 10.1186/1471-2105-8-105
Dührkop K et al (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302 DOI: 10.1038/s41592-019-0344-8
Ludwig M, Fleischauer M, Dührkop K, Hoffmann MA, Böcker SD (2020) Novo molecular formula annotation and structure elucidation using SIRIUS 4. In: Li S (ed) Computational methods and data analysis for metabolomics. Springer US, pp 185–207. 10.1007/978-1-0716-0239-3_11 DOI: 10.1007/978-1-0716-0239-3_11
Sumner LW et al (2007) Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics Off J Metabolomic Soc 3:211–221
Charbonnet JA et al (2022) Communicating confidence of per- and polyfluoroalkyl substance identification via high-resolution mass spectrometry. Environ Sci Technol Lett 9:473–481 DOI: 10.1021/acs.estlett.2c00206
Alygizakis N et al (2023) Towards a harmonized identification scoring system in LC-HRMS/MS based non-target screening (NTS) of emerging contaminants. TrAC Trends Anal Chem 159:116944 DOI: 10.1016/j.trac.2023.116944
Kind T et al (2018) Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev 37:513–532 DOI: 10.1002/mas.21535
Vinaixa M et al (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem 78:23–35 DOI: 10.1016/j.trac.2015.09.005
Mayfield J (2023) CDK Depict Web Interface. https://www.simolecule.com/cdkdepict/depict.html
Stein SE (1995) Chemical substructure identification by mass spectral library searching. J Am Soc Mass Spectrom 6:644–655 DOI: 10.1016/1044-0305(95)00291-K
Stein SE (1994) Estimating probabilities of correct identification from results of mass spectral library searches. J Am Soc Mass Spectrom 5:316–323 DOI: 10.1016/1044-0305(94)85022-4
Stein SE, Scott DR (1994) Optimization and testing of mass spectral library search algorithms for compound identification. J Am Soc Mass Spectrom 5:859–866 DOI: 10.1016/1044-0305(94)87009-8
Mass Consortium (MCC) (2023) METLIN Gen2. https://massconsortium.com/
Scripps Research (2023) METLIN. https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage
Xue J, Guijas C, Benton HP, Warth B, Siuzdak G (2020) METLIN MS2 molecular standards database: a broad chemical and biological resource. Nat Methods 17:953–954 DOI: 10.1038/s41592-020-0942-5
HighChem LLC (2023) mzCloud Advanced Mass Spectral Database. https://www.mzcloud.org/
Horai H et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714 DOI: 10.1002/jms.1777
NORMAN Association &; MassBank Consortium (2022) MassBank EU: European MassBank Website. https://massbank.eu/MassBank/
FiehnLab (2023) MassBank of North America. http://mona.fiehnlab.ucdavis.edu/
Wang M et al (2016) Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 34:828–837 DOI: 10.1038/nbt.3597
Wishart DS et al (2022) HMDB 5.0: the Human Metabolome Database for 2022. Nucleic Acids Res 50:D622–D631 DOI: 10.1093/nar/gkab1062
Röst HL et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748 DOI: 10.1038/nmeth.3959
Talavera Andújar B et al (2022) Studying the Parkinson’s disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study. Anal Bioanal Chem. 10.1007/s00216-022-04207-z DOI: 10.1007/s00216-022-04207-z
Schollée JE et al (2017) Similarity of high-resolution tandem mass spectrometry spectra of structurally related micropollutants and transformation products. J Am Soc Mass Spectrom 28:2692–2704 DOI: 10.1007/s13361-017-1797-6
Oberleitner D, Schmid R, Schulz W, Bergmann A, Achten C (2021) Feature-based molecular networking for identification of organic micropollutants including metabolites by non-target analysis applied to riverbank filtration. Anal Bioanal Chem 413:5291–5300 DOI: 10.1007/s00216-021-03500-7
Bittremieux W et al (2022) Open Access Repository-Scale Propagated Nearest Neighbor Suspect Spectral Library for Untargeted Metabolomics. https://doi.org/10.1101/2022.05.15.490691
Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124 DOI: 10.1021/ed100697w
Krier J et al (2022) Discovering pesticides and their TPs in Luxembourg waters using open cheminformatics approaches. Environ Int 158:106885 DOI: 10.1016/j.envint.2021.106885
Huntscha S, Hofstetter TB, Schymanski EL, Spahr S, Hollender J (2014) Biotransformation of benzotriazoles: insights from transformation product identification and compound-specific isotope analysis. Environ Sci Technol 48:4435–4443 DOI: 10.1021/es405694z
McKay BD, Yirik MA, Steinbeck C (2022) Surge: a fast open-source chemical graph generator. J Cheminformatics 14:24 DOI: 10.1186/s13321-022-00604-9
Yirik MA, Sorokina M, Steinbeck C (2021) MAYGEN: an open-source chemical structure generator for constitutional isomers based on the orderly generation principle. J Cheminformatics 13:48 DOI: 10.1186/s13321-021-00529-9
Kerber A, Laue R, Meringer M, Rücker C, Schymanski E (2014) Mathematical chemistry and chemoinformatics: structure generation, elucidation, and quantitative structure—property relationships. (De Gruyter)
Stravs MA, Dührkop K, Böcker S, Zamboni N (2022) MSNovelist: de novo structure generation from mass spectra. Nat Methods 19:865–870 DOI: 10.1038/s41592-022-01486-3
Ludwig M et al (2020) Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat Mach Intell 2:629–641 DOI: 10.1038/s42256-020-00234-6
Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci 112:12580–12585 DOI: 10.1073/pnas.1509788112
Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11:148 DOI: 10.1186/1471-2105-11-148
Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res 42:W94–W99 DOI: 10.1093/nar/gku436
Wang F et al (2021) CFM-ID 4.0: more accurate ESI-MS/MS spectral prediction and compound identification. Anal Chem 93:11692–11700 DOI: 10.1021/acs.analchem.1c01465
Blaženović I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8:31 DOI: 10.3390/metabo8020031
Schymanski EL et al (2017) Critical Assessment of Small Molecule Identification 2016: automated methods. J Cheminformatics 9:22 DOI: 10.1186/s13321-017-0207-1
Liu Y, D’Agostino LA, Qu G, Jiang G, Martin JW (2019) High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends Anal Chem 121:115420 DOI: 10.1016/j.trac.2019.02.021
Bach E, Schymanski EL, Rousu J (2022) Joint structural annotation of small molecules using liquid chromatography retention order and tandem mass spectrometry data. Nat Mach Intell 4:1224–1237 DOI: 10.1038/s42256-022-00577-2
Daylight Chemical Information Systems, Inc (2008) SMARTS—A Language for Describing Molecular Patterns. SMARTS—A Language for Describing Molecular Patterns. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
Ruttkies C et al (2019) Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Anal Bioanal Chem 411:4683–4700 DOI: 10.1007/s00216-019-01885-0
Lai A et al (2021) Retrospective non-target analysis to support regulatory water monitoring: from masses of interest to recommendations via in silico workflows. Environ Sci Eur 33:43 DOI: 10.1186/s12302-021-00475-1
Schymanski E (2021) Exposome boot camp PubChemLite lab: cheminformatics for the exposome. Zenodo. 10.5281/zenodo.5115497
Hug C, Ulrich N, Schulze T, Brack W, Krauss M (2014) Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environ Pollut 184:25–32 DOI: 10.1016/j.envpol.2013.07.048
Schymanski EL, Meringer M, Brack W (2011) Automated strategies to identify compounds on the basis of GC/EI-MS and calculated properties. Anal Chem 83:903–912 DOI: 10.1021/ac102574h
Rostad CE, Pereira WE (1986) Kovats and lee retention indices determined by gas chromatography/mass spectrometry for organic compounds of environmental interest. J High Resolut Chromatogr 9:328–334 DOI: 10.1002/jhrc.1240090603
Zenkevich IG, Ukolova ES (2012) Dependence of chromatographic retention indices on a ratio of amounts of target and reference compounds. J Chromatogr A 1265:133–143 DOI: 10.1016/j.chroma.2012.09.076
Bade R, Bijlsma L, Sancho JV, Hernández F (2015) Critical evaluation of a simple retention time predictor based on LogKow as a complementary tool in the identification of emerging contaminants in water. Talanta 139:143–149 DOI: 10.1016/j.talanta.2015.02.055
Stanstrup J, Neumann S, Vrhovšek U (2015) PredRet: prediction of retention time by direct mapping between multiple chromatographic systems. Anal Chem 87:9421–9428 DOI: 10.1021/acs.analchem.5b02287
Low DY et al (2021) Data sharing in PredRet for accurate prediction of retention time: application to plant food bioactive compounds. Food Chem 357:129757 DOI: 10.1016/j.foodchem.2021.129757
Bade R et al (2015) Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis. Sci Total Environ 538:934–941 DOI: 10.1016/j.scitotenv.2015.08.078
Celma A et al (2022) Prediction of retention time and collision cross section (CCSH+, CCSH–, and CCSNa+) of emerging contaminants using multiple adaptive regression splines. J Chem Inf Model 62:5425–5434 DOI: 10.1021/acs.jcim.2c00847
Miller TH, Musenga A, Cowan DA, Barron LP (2013) Prediction of chromatographic retention time in high-resolution anti-doping screening data using artificial neural networks. Anal Chem 85:10330–10337 DOI: 10.1021/ac4024878
Mollerup CB, Mardal M, Dalsgaard PW, Linnet K, Barron LP (2018) Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. J Chromatogr A 1542:82–88 DOI: 10.1016/j.chroma.2018.02.025
Aalizadeh R, Thomaidis NS, Bletsou AA, Gago-Ferrero P (2016) Quantitative structure-retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. J Chem Inf Model 56:1384–1398 DOI: 10.1021/acs.jcim.5b00752
Bride E, Heinisch S, Bonnefille B, Guillemain C, Margoum C (2021) Suspect screening of environmental contaminants by UHPLC-HRMS and transposable Quantitative Structure-Retention Relationship modelling. J Hazard Mater 409:124652 DOI: 10.1016/j.jhazmat.2020.124652
Falchi F et al (2016) Kernel-based, partial least squares quantitative structure-retention relationship model for UPLC retention time prediction: a useful tool for metabolite identification. Anal Chem 88:9510–9517 DOI: 10.1021/acs.analchem.6b02075
Munro K et al (2015) Artificial neural network modelling of pharmaceutical residue retention times in wastewater extracts using gradient liquid chromatography-high resolution mass spectrometry data. J Chromatogr A 1396:34–44 DOI: 10.1016/j.chroma.2015.03.063
Aalizadeh R, Nika M-C, Thomaidis NS (2019) Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants. J Hazard Mater 363:277–285 DOI: 10.1016/j.jhazmat.2018.09.047
Creek DJ et al (2011) Toward global metabolomics analysis with hydrophilic interaction liquid chromatography mass spectrometry: improved metabolite identification by retention time prediction. Anal Chem 83:8703–8710 DOI: 10.1021/ac2021823
Aalizadeh R et al (2021) Development and application of liquid chromatographic retention time indices in HRMS-based suspect and nontarget screening. Anal Chem 93:11601–11611 DOI: 10.1021/acs.analchem.1c02348
Stoffel R, Quilliam MA, Hardt N, Fridstrom A, Witting M (2022) N-Alkylpyridinium sulfonates for retention time indexing in reversed-phase-liquid chromatography-mass spectrometry–based metabolomics. Anal Bioanal Chem 414:7387–7398 DOI: 10.1007/s00216-021-03828-0
Government of Canada (2020) RM-RILC | National Research Council Canada. https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/115/html
Aalizadeh R, Nikolopoulou V, Thomaidis NS (2022) Development of liquid chromatographic retention index based on cocamide diethanolamine homologous series (C(n)-DEA). Anal Chem 94:15987–15996 DOI: 10.1021/acs.analchem.2c02893
Chen Y, Li E-M, Xu L-Y (2022) Guide to metabolomics analysis: a bioinformatics workflow. Metabolites 12:357 DOI: 10.3390/metabo12040357
Stanstrup J et al (2019) The metaRbolomics toolbox in bioconductor and beyond. Metabolites 9:200 DOI: 10.3390/metabo9100200
González-Gaya B et al (2021) Suspect and non-target screening: the last frontier in environmental analysis. Anal Methods 13:1876–1904 DOI: 10.1039/D1AY00111F
Benton HP, Wong DM, Trauger SA, Siuzdak G (2008) XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Anal Chem 80:6382–6389 DOI: 10.1021/ac800795f
Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–5039 DOI: 10.1021/ac300698c
Dührkop K et al (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471 DOI: 10.1038/s41587-020-0740-8
Ji H, Zeng F, Xu Y, Lu H, Zhang Z (2017) KPIC2: an effective framework for mass spectrometry-based metabolomics using pure ion chromatograms. Anal Chem 89:7631–7640 DOI: 10.1021/acs.analchem.7b01547
Alygizakis NA et al (2019) NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. TrAC Trends Anal Chem 115:129–137 DOI: 10.1016/j.trac.2019.04.008
NORMAN Association (2022) NORMAN Substance Database (NORMAN SusDat) Website. https://www.norman-network.com/nds/susdat/
Aron AT et al (2020) Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc 15:1954–1991 DOI: 10.1038/s41596-020-0317-5
Loos M (2023) enviMass website. https://www.envibee.ch/eng/enviMass/overview.htm
Samanipour S, Reid MJ, Bæk K, Thomas KV (2018) Combining a deconvolution and a universal library search algorithm for the nontarget analysis of data-independent acquisition mode liquid chromatography−high-resolution mass spectrometry results. Environ Sci Technol 52:4694–4701 DOI: 10.1021/acs.est.8b00259
Samanipour S et al (2019) Machine learning combined with non-targeted LC-HRMS analysis for a risk warning system of chemical hazards in drinking water: a proof of concept. Talanta 195:426–432 DOI: 10.1016/j.talanta.2018.11.039
Lommen A (2009) MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem 81:3079–3086 DOI: 10.1021/ac900036d
Enke CG (1997) A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Anal Chem 69:4885–4893 DOI: 10.1021/ac970095w
Oss M, Kruve A, Herodes K, Leito I (2010) Electrospray ionization efficiency scale of organic compounds. Anal Chem 82:2865–2872 DOI: 10.1021/ac902856t
Hermans J, Ongay S, Markov V, Bischoff R (2017) Physicochemical parameters affecting the electrospray ionization efficiency of amino acids after acylation. Anal Chem 89:9159–9166 DOI: 10.1021/acs.analchem.7b01899
Cech NB, Enke CG (2000) Relating electrospray ionization response to nonpolar character of small peptides. Anal Chem 72:2717–2723 DOI: 10.1021/ac9914869
Ehrmann BM, Henriksen T, Cech NB (2008) Relative importance of basicity in the gas phase and in solution for determining selectivity in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 19:719–728 DOI: 10.1016/j.jasms.2008.01.003
Gioumouxouzis CI, Kouskoura MG, Markopoulou CK (2015) Negative electrospray ionization mode in mass spectrometry: a new perspective via modeling. J Chromatogr B 998–999:97–105 DOI: 10.1016/j.jchromb.2015.06.009
Liigand J, Kruve A, Leito I, Girod M, Antoine R (2014) Effect of mobile phase on electrospray ionization efficiency. J Am Soc Mass Spectrom 25:1853–1861 DOI: 10.1007/s13361-014-0969-x
Aalizadeh R, Nikolopoulou V, Alygizakis N, Slobodnik J, Thomaidis NS (2022) A novel workflow for semi-quantification of emerging contaminants in environmental samples analyzed by LC-HRMS. Anal Bioanal Chem 414:7435–7450 DOI: 10.1007/s00216-022-04084-6
Liigand J et al (2020) Quantification for non-targeted LC/MS screening without standard substances. Sci Rep 10:5808 DOI: 10.1038/s41598-020-62573-z
Dahal UP, Jones JP, Davis JA, Rock DA (2011) Small molecule quantification by liquid chromatography-mass spectrometry for metabolites of drugs and drug candidates. Drug Metab Dispos 39:2355–2360 DOI: 10.1124/dmd.111.040865
Ye L, Xing L, Li J, Kong M, Su G (2022) Recognition of organophosphate esters (OPEs) in the sediment of 12 Lakes in the Taihu Lake Basin of China. ACS EST Water 2:2450–2459 DOI: 10.1021/acsestwater.2c00298
Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminformatics 7:20 DOI: 10.1186/s13321-015-0069-3
Willett P (2014) The calculation of molecular structural similarity: principles and practice. Mol Inform 33:403–413 DOI: 10.1002/minf.201400024
Kruve A, Kiefer K, Hollender J (2021) Benchmarking of the quantification approaches for the non-targeted screening of micropollutants and their transformation products in groundwater. Anal Bioanal Chem 413:1549–1559
Pieke EN, Granby K, Trier X, Smedsgaard J (2017) A framework to estimate concentrations of potentially unknown substances by semi-quantification in liquid chromatography electrospray ionization mass spectrometry. Anal Chim Acta 975:30–41 DOI: 10.1016/j.aca.2017.03.054
Kim Y et al (2022) Non-targeted identification and semi-quantitation of emerging per- and polyfluoroalkyl substances (PFAS) in US rainwater. Environ Sci Process Impacts. 10.1039/D2EM00349J DOI: 10.1039/D2EM00349J
Aalizadeh R, Panara A, Thomaidis NS (2021) Development and application of a novel semi-quantification approach in LC-QToF-MS analysis of natural products. J Am Soc Mass Spectrom 32:1412–1423 DOI: 10.1021/jasms.1c00032
Been F et al (2021) Risk-based prioritization of suspects detected in riverine water using complementary chromatographic techniques. Water Res 204:117612 DOI: 10.1016/j.watres.2021.117612
Nanusha MY et al (2022) Unravelling the occurrence of trace contaminants in surface waters using semi-quantitative suspected non-target screening analyses. Environ Pollut 315:120346 DOI: 10.1016/j.envpol.2022.120346
Tadić Đ, Manasfi R, Bertrand M, Sauvêtre A, Chiron S (2022) Use of passive and grab sampling and high-resolution mass spectrometry for non-targeted analysis of emerging contaminants and their semi-quantification in water. Molecules 27:3167 DOI: 10.3390/molecules27103167
Groff LC et al (2022) Uncertainty estimation strategies for quantitative non-targeted analysis. Anal Bioanal Chem 414:4919–4933 DOI: 10.1007/s00216-022-04118-z
Boyacı E et al (2015) Sample preparation with solid phase microextraction and exhaustive extraction approaches: comparison for challenging cases. Anal Chim Acta 873:14–30 DOI: 10.1016/j.aca.2014.12.051
Samanipour S et al (2018) Assessing sample extraction efficiencies for the analysis of complex unresolved mixtures of organic pollutants: a comprehensive non-target approach. Anal Chim Acta 1025:92–98 DOI: 10.1016/j.aca.2018.04.020
Furey A, Moriarty M, Bane V, Kinsella B, Lehane M (2013) Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 115:104–122 DOI: 10.1016/j.talanta.2013.03.048
Evans EH, Clough R (2005) Isotope dilution analysis. In: Worsfold P, Townshend A, Poole C (eds) Encyclopedia of analytical science. Elsevier, pp 545–553. 10.1016/B0-12-369397-7/00301-0 DOI: 10.1016/B0-12-369397-7/00301-0
Ng B, Quinete N, Gardinali PR (2020) Assessing accuracy, precision and selectivity using quality controls for non-targeted analysis. Sci Total Environ 713:136568 DOI: 10.1016/j.scitotenv.2020.136568
Schulz W et al (2019) Use of non-target screening by means of LC-ESI-HRMS in water analysis (Guideline—edition 1.0 2019)
Bader T, Schulz W, Kümmerer K, Winzenbacher R (2017) LC-HRMS data processing strategy for reliable sample comparison exemplified by the assessment of water treatment processes. Anal Chem 89:13219–13226 DOI: 10.1021/acs.analchem.7b03037
Kaserzon SL, Heffernan AL, Thompson K, Mueller JF, Gomez Ramos MJ (2017) Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter. Chemosphere 182:656–664 DOI: 10.1016/j.chemosphere.2017.05.071
Broadhurst D et al (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14:72 DOI: 10.1007/s11306-018-1367-3
Schollée JE, Hollender J, McArdell CS (2021) Characterization of advanced wastewater treatment with ozone and activated carbon using LC-HRMS based non-target screening with automated trend assignment. Water Res 200:117209 DOI: 10.1016/j.watres.2021.117209
Bader T, Schulz W, Kümmerer K, Winzenbacher R (2016) General strategies to increase the repeatability in non-target screening by liquid chromatography-high resolution mass spectrometry. Anal Chim Acta 935:173–186 DOI: 10.1016/j.aca.2016.06.030
Garofolo F (2004) LC-MS Instrument Calibration. in Analytical Method Validation and Instrument Performance Verification 197–220 (John Wiley & Sons, Ltd). https://doi.org/10.1002/0471463728.ch13
Soulier C, Coureau C, Togola A (2016) Environmental forensics in groundwater coupling passive sampling and high resolution mass spectrometry for screening. Sci Total Environ 563–564:845–854 DOI: 10.1016/j.scitotenv.2016.01.056
Letzel T et al (2015) LC–MS screening techniques for wastewater analysis and analytical data handling strategies: sartans and their transformation products as an example. Chemosphere 137:198–206 DOI: 10.1016/j.chemosphere.2015.06.083
Samanipour S, Langford K, Reid MJ, Thomas KV (2017) A two stage algorithm for target and suspect analysis of produced water via gas chromatography coupled with high resolution time of flight mass spectrometry. J Chromatogr A 1463:153–161 DOI: 10.1016/j.chroma.2016.07.076
Scheltema RA et al (2008) Increasing the mass accuracy of high-resolution LC-MS data using background ions—a case study on the LTQ-Orbitrap. Proteomics 8:4647–4656 DOI: 10.1002/pmic.200800314
Hohrenk LL et al (2020) Comparison of software tools for liquid chromatography–high-resolution mass spectrometry data processing in nontarget screening of environmental samples. Anal Chem 92:1898–1907 DOI: 10.1021/acs.analchem.9b04095
ISO 21253-1:2019(en), Water quality—Multi-compound class methods—Part 1: Criteria for the identification of target compounds by gas and liquid chromatography and mass spectrometry. https://www.iso.org/obp/ui/en/#iso:std:iso:21253:-1:ed-1:v1:en
ISO 21253-2:2019(en), Water quality—Multi-compound class methods—Part 2: Criteria for the quantitative determination of organic substances using a multi-compound class analytical method. https://www.iso.org/obp/ui/en/#iso:std:iso:21253:-2:ed-1:v1:en
European Commission, Directorate general for health and food safety (2021) Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed, SANTE/11312/2021
Viant MR et al (2019) Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat Commun 10:3041 DOI: 10.1038/s41467-019-10900-y
Alygizakis NA et al (2018) Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ Sci Technol 52:5135–5144 DOI: 10.1021/acs.est.8b00365
Dulio V et al (2020) The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! Environ Sci Eur 32:100 DOI: 10.1186/s12302-020-00375-w
Gonçalves NPF et al (2021) Study of the photoinduced transformations of maprotiline in river water using liquid chromatography high-resolution mass spectrometry. Sci Total Environ 755:143556 DOI: 10.1016/j.scitotenv.2020.143556
Mascolo G, Murgolo S, Stefani F, Viganò L (2019) Target and suspect contaminants of emerging concern in the Po River Delta lagoons. Estuar Coast Shelf Sci 230:106424 DOI: 10.1016/j.ecss.2019.106424
Sörengård M, Ahrens L, Alygizakis N, Jensen PE, Gago-Ferrero P (2020) Non-target and suspect screening strategies for electrodialytic soil remediation evaluation: assessing changes in the molecular fingerprints and per- and polyfluoroalkyl substances (PFASs). J Environ Chem Eng 8:104437 DOI: 10.1016/j.jece.2020.104437
Kale NS et al (2016) MetaboLights: an open-access database repository for metabolomics data. Curr Protocals Bioinformatics 53:14131–141318
Sud M et al (2016) Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44:D463–D470 DOI: 10.1093/nar/gkv1042
NORMAN Association (2023) NORMAN DSFP Cookbook: Technical guide for acquisition and archivation of high-resolution mass spectrometry (HRMS) chromatograms to NORMAN Digital Sample Freezing Platform (DSFP). https://norman-data.eu/NORMAN_Internal_Documents/Cookbook%20-%20How%20to%20contribute%20data%20to%20DSFP_v270121.pdf
Murray KK et al (2013) Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013). Pure Appl Chem 85:1515–1609 DOI: 10.1351/PAC-REC-06-04-06
GO FAIR (2023) FAIR Principles. https://www.go-fair.org/fair-principles/