Agent-based modeling; Local electricity markets; Microgrids; Peer-to-peer energy trading; Agent-based model; Energy markets; Energy trading; Local electricity market; Microgrid; Peer to peer; Performance; Real-world; Renewable energy source; Building and Construction; Renewable Energy, Sustainability and the Environment; Mechanical Engineering; Energy (all); Management, Monitoring, Policy and Law; General Energy
Abstract :
[en] The shift towards renewable energy sources (RES) in energy systems is becoming increasingly important. Residential energy generation and storage assets, smart home energy management systems, and peer-to-peer (P2P) electricity trading in microgrids can help integrate and balance decentralized renewable electricity supply with an increasingly electrified power, heat, and transport demand, reducing costs and CO2 emissions. However, these microgrids are difficult to model because they consist of autonomous and interacting entities, leading to emergent phenomena and a high degree of complexity. Agent-based modeling is an established technique to simulate the complexity of microgrids. However, the existing literature still lacks real-world implementation studies and, as a first step, models capable of validating the existing results with real-world data. To this end, we present an agent-based model and analyze the corresponding microgrid performance with real-world data. The model quantifies economic, technical, and environmental metrics to simulate microgrid performance holistically and, in line with state-of-the-art research, consists of self-interested, autonomous agents with specific load profiles, RES generation, and demand-response potential. The model can simulate a P2P marketplace where electricity is traded between agents. In the second part of the paper, we validate the model with data from a medium-sized German city. In this case study, we also compare microgrid performance in 2022, during the energy market crisis in Europe, with historical data from 2019 to assess the effects of energy market shocks. Our results show how microgrids with P2P trading can reduce electricity costs and CO2 emissions. However, our trading mechanism illustrates that the benefits of energy-community trading are almost exclusively shared among prosumers, highlighting the need to consider distributional issues when implementing P2P trading.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
Disciplines :
Management information systems Computer science
Author, co-author :
Madler, Jochen ; Research Center Finance & Information Management, Branch Business & Information Systems Engineering of the Fraunhofer FIT, Technical University of Munich, Germany
Harding, Sebastian; Research Center Finance & Information Management, Branch Business & Information Systems Engineering of the Fraunhofer FIT, University of Bayreuth, Germany
WEIBELZAHL, Martin ✱; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX ; Research Center Finance & Information Management, Branch Business & Information Systems Engineering of the Fraunhofer FIT, University of Bayreuth, Germany
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
A multi-agent model of urban microgrids: Assessing the effects of energy-market shocks using real-world data
The authors gratefully acknowledge the financial support of the German Federal Ministry of Education and Research (BMBF) and the project supervision of the project management organization Projektträger Jülich (PtJ) for the Kopernikus-project "SynErgie" (Grant No. 03SFK3A3-2; 03SFK3T2-2). Responsibility for the contents remains solely with the authors.
Abrishambaf, O., Lezama, F., Faria, P., Vale, Z., Towards transactive energy systems: an analysis on current trends. Energ Strat Rev, 26, 2019, S. 100418, 10.1016/j.esr.2019.100418.
Akter MN, Mahmud MA, Oo, Amanullah MT. An optimal distributed transactive energy sharing approach for residential microgrids. In: 2017 IEEE Power & Energy Society General Meeting. 2017 IEEE Power & Energy Society General Meeting (PESGM). Chicago, IL, 16.07.2017 - 20.07.2017. IEEE; 2017. S. 1–5.
Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems. In: Proceedings of the National Academy of Sciences of the United States of America 99 Suppl 3 (Suppl 3); 2002. p. 7280–7. doi: 10.1073/pnas.082080899.
Burkhardt J. PV-Eträge: kWp pro m2 der Photovoltaik Anlage | Echtsolar. In: Echtsolar, 26.11.2020. 2020. Online verfügbar unter https://echtsolar.de/kwp-pro-m2/, zuletzt geprüft am 18.12.2022.
Camarinha-Matos, L.M., Collaborative smart grids – a survey on trends. Renew Sustain Energy Rev 65 (2016), 283–294, 10.1016/j.rser.2016.06.093.
Colak, I., Sagiroglu, S., Fulli, G., Yesilbudak, M., Covrig, C.-F., A survey on the critical issues in smart grid technologies. Renew Sustain Energy Rev 54 (2016), 396–405, 10.1016/j.rser.2015.10.036.
Alzate EB, Mallick NH, Xie J. A high-resolution smart home power demand model and future impact on load profile in Germany. In: 2014 IEEE International Conference on Power and Energy (PECon); 2014. p. 53–8.
ENTSO-E. Actual Generation per Production Type. 2022. Online verfügbar unter https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/show, zuletzt aktualisiert am 11.21.2022.
ENTSO-E. Day-ahead prices BZN|DE-LU. 2022. Online verfügbar unter https://transparency.entsoe.eu/transmission-domain/r2/dayAheadPrices/show?name=&defaultValue=true&viewType=GRAPH&areaType=BZN&atch=false&dateTime.dateTime=03.11.2022+00:00|CET|DAY&biddingZone.values=CTY|10Y1001A1001A83F!BZN|10Y1001A1001A82H&resolution.values=PT15M&resolution.values=PT30M&resolution.values=PT60M&dateTime.timezone=CET_CEST&dateTime.timezone_input=CET+(UTC+1)+/+CEST+(UTC+2), zuletzt geprüft am 03.11.2022.
EPEX SPOT. Basics of the Power Market. 2023. Online verfügbar unter https://www.epexspot.com/en/basicspowermarket, zuletzt geprüft am 03.12.2023.
European Commission. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS EMPTY. 2021. Online verfügbar unter https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0550, zuletzt geprüft am 03.11.2022.
EV Database. Electric Vehicle Database. 2023. Online verfügbar unter https://ev-database.org/de/#sort:path∼type∼order=.rank∼number∼desc|make-checkbox-dropdown:pathGroup=.opel∼.volkswagen|price-checkbox-dropdown:pathGroup=.price_filter30-40|availability-checkbox-dropdown:pathGroup=.current|range-slider-range:prev∼next=10∼1000|range-slider-eff:prev∼next=100∼300|range-slider-acceleration:prev∼next=2∼23|range-slider-fastcharge:prev∼next=0∼1500|range-slider-towweight:prev∼next=0∼2500|range-slider-topspeed:prev∼next=110∼350|paging:currentPage=0|paging:number=all, zuletzt geprüft am 04.13.2023.
Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M. A practical scheme to involve degradation cost of lithium-ion batteries in vehicle-to-grid applications. IEEE Trans. Sustain. Energy 2016;7(4):1730–38. doi: 10.1109/TSTE.2016.2558500.
Forschungsstelle für Energiewirtschaft e. V. (FfE). Synthetic Sample Mobility Profile by Household Types (Germany). 2020. Online verfügbar unter https://opendata.ffe.de/dataset/synthetic-sample-mobility-profile-by-household-types-germany/.
Fraunhofer Institute for Solar Energy Systems ISE. Levelized Cost of Electricity- Renewable Energy Technologies. 2021. Online verfügbar unter https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2021_Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf, zuletzt geprüft am 11.21.2022.
Gillespie, Todd; Beapuy, Francoise de. Europe Prepares Blackout Plans to Head Off Winter Energy Chaos. 2022. Online verfügbar unter https://www.bloomberg.com/news/articles/2022-09-15/europe-prepares-blackout-plans-to-head-off-winter-energy-chaos?leadSource=uverify%20wall, zuletzt geprüft am 03.11.2022.
Guimaraes DV, Gough MB, Santos SF, Reis IFG, Home-Ortiz JM, Catalao JPS. Agent-Based Modeling of Peer-to-Peer Energy Trading in a Smart Grid Environment. 2021. p. 1–6. doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584767.
Hamilton, J.D., Oil and the Macroeconomy since World War II. J Polit Econ 91:2 (1983), 228–248, 10.1086/261140.
Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C., Microgrids. IEEE Power Energy Mag 5:4 (2007), 78–94, 10.1109/MPAE.2007.376583.
Huawei. Smart String Energy Storage System. 2023. Online verfügbar unter https://solar.huawei.com/en-AU/download?p=%2f-%2fmedia%2fSolar%2fattachment%2fpdf%2fau%2fdatasheet%2fLUNA2000-5-15-S0.pdf, zuletzt geprüft am 04.13.2023.
Huld T, Müller R, Gambardella A. A new solar radiation database for estimating PV performance in Europe and Africa. In: 0038-092X 86 (6); 2012. p. 1803–15. doi: 10.1016/j.solener.2012.03.006.
Jabeur, R., Boujoudar, Y., Azeroual, M., Aljarbouh, A., Ouaaline, N., Microgrid energy management system for smart home using multi-agent system. IJECE, 12(2), 2022, 1153, 10.11591/ijece.v12i2.pp1153-1160.
Jin, M., Feng, W., Marnay, C., Spanos, C., Microgrid to enable optimal distributed energy retail and end-user demand response. Appl Energy 210 (2018), 1321–1335, 10.1016/j.apenergy.2017.05.103.
Kahrobaee, S., Rajabzadeh, R.A., Soh, L.-K., Asgarpoor, S., Multiagent study of smart grid customers with neighborhood electricity trading. Electr Pow Syst Res 111 (2014), 123–132, 10.1016/j.epsr.2014.02.013.
Kazil J, Masad D, Crooks A. Utilizing python for agent-based modeling: the mesa framework. In: Social, cultural, and behavioral modelling; 2020. p. 308–317. Online verfügbar unter https://mesa.readthedocs.io/en/stable/.
Keirstead, J., Behavioural responses to photovoltaic systems in the UK domestic sector. Energy Policy 35:8 (2007), 4128–4141, 10.1016/j.enpol.2007.02.019.
Kilian, L., Oil price shocks: causes and consequences. Annu Rev Resour Econ 6:1 (2014), 133–154, 10.1146/annurev-resource-083013-114701.
Knight MR. Stochastic impacts of Metaheuristics from the Toaster to the Turbine [Technology Leaders]. IEEE Electrific Mag 2016;4(4):52–40. doi: 10.1109/MELE.2016.2614218.
Li, B., Wan, C., Yuan, K., Song, Y.i., Demand response for integrating distributed energy resources in transactive energy system. Energy Procedia 158 (2019), 6645–6651, 10.1016/j.egypro.2019.01.040.
Luo, Z., Peng, J., Cao, J., Yin, R., Zou, B., Tan, Y., et al. Demand flexibility of residential buildings: definitions, flexible loads, and quantification methods. Engineering 16 (2022), 123–140, 10.1016/j.eng.2022.01.010.
Meng L, Sanseverino ER, Luna A, Dragicevic T, Vasquez JC, Guerrero JM. Microgrid supervisory controllers and energy management systems: a literature review. Renewable Sustainable Energy Rev 2016;60:1263–73. doi: 10.1016/j.rser.2016.03.003.
Neves, D., Scott, I., Silva, C.A., Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities. Energy, 205, 2020, S. 118023, 10.1016/j.energy.2020.118023.
Nguyen HT, Battula S, Takkala RR, Wang Z, Tesfatsion L. An integrated transmission and distribution test system for evaluation of transactive energy designs. Appl Energy 2019;240:666–79. doi: 10.1016/j.apenergy.2019.01.178.
Nilsson, A., Stoll, P., Brandt, N., Assessing the impact of real-time price visualization on residential electricity consumption, costs, and carbon emissions. Resour Conserv Recycl 124 (2017), 152–161, 10.1016/j.resconrec.2015.10.007.
Reis IFG, Gonçalves I, Antunes CH, Lopes MAR. A multiagent framework to model the interactions of local energy communities and power systems. 2021:1–6. doi: 10.1109/SEST50973.2021.9543421.
Reis IFG, Lopes MAR, Antunes CH. Energy transactions between energy community members: an agent-based modeling approach. In: 2018 International Conference on Smart Energy Systems and Technologies. 10-12 September 2018, Sevilla, Spain. 2018 International Conference on Smart Energy Systems and Technologies (SEST). Sevilla, 9/10/2018 - 9/12/2018. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers; 2018. p. 1–6.
Reis, I.F.G., Gonçalves, I., Lopes, M.A.R., Antunes, C.H., Assessing the influence of different goals in energy communities’ self-sufficiency—an optimized multiagent approach. Energies, 14(4), 2021, S. 989, 10.3390/en14040989.
Reis, I.F.G., Gonçalves, I., Lopes, M.A.R., Antunes, C.H., A multi-agent system approach to exploit demand-side flexibility in an energy community. Util Policy, 67, 2020, 101114, 10.1016/j.jup.2020.101114.
sonnen (2023): sonnen website - sonnenBatterie 10. Online verfügbar unter https://sonnen.de/stromspeicher/sonnenbatterie-10/, zuletzt geprüft am 04.13.2023.
Rehm TW, Schneiders T, Strohm C, Deimel M. Smart home field test – investigation of heating energy savings in residential buildings. In: 2018 7th International Energy and Sustainability Conference (IESC); 2018. p. 1–8.
Tesla. Tesla website - Powerwall. 2023. Online verfügbar unter https://www.tesla.com/de_de/powerwall, zuletzt geprüft am 04.13.2023.
tetraeder.solar. website of tetreader.solar. 2022. Online verfügbar unter solar potential analysis, zuletzt geprüft am 11.19.2022.
Umweltbundesamt. Emissionsbilanz erneuerbarer Energieträger. 2021. Online verfügbar unter https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2021-12-13_climate-change_71-2021_emissionsbilanz_erneuerbarer_energien_2020.pdf, zuletzt aktualisiert am 11.21.2022.
Wang, X., Wang, C., Xu, T., Guo, L., Li, P., Yu, L., et al. Optimal voltage regulation for distribution networks with multi-microgrids. Appl Energy 210 (2018), 1027–1036, 10.1016/j.apenergy.2017.08.113.
Xetra. Continuous trading with auctions. 2023. Online verfügbar unter https://www.xetra.com/xetra-en/trading/trading-models/continuous-trading-with-auctions, zuletzt geprüft am 03.12.2023.
Xiao K, Liu Q, Liu C, Xiong H. Price shock detection with an influence-based model of social attention. ACM Trans Manage Inf Syst 2018;9(1):p. 1–21. doi: 10.1145/3131781.
Xiong, L., Li, P., Wang, Z., Wang, J., Multi-agent based multi objective renewable energy management for diversified community power consumers. Appl Energy, 259, 2020, S. 114140, 10.1016/j.apenergy.2019.114140.
Zhang, C., Wu, J., Zhou, Y., Cheng, M., Long, C., Peer-to-Peer energy trading in a Microgrid. Appl Energy 220 (2018), 1–12, 10.1016/j.apenergy.2018.03.010.