Carbon emissions; Congestion management; Industrial demand side management; Nodal pricing; Renewable energies; Congestions managements; Electricity grids; Electricity supply; Industrial demands; Management IS; Renewable electricity; Energy (all); Management, Monitoring, Policy and Law; General Energy
Abstract :
[en] Electricity systems are in dire need to scale up volatile decentralized renewable electricity supply (RES), reducing the dependency on fossil fuels and drastically cutting carbon emissions. Industrial demand side management (DSM) is a key enabler of the energy transition, as it allows to align large shares of electricity consumption with (renewable) supply. We present a short-term market model to evaluate the economic value (i.e., reduced system costs) and ecologic value (i.e., reduced carbon emissions) of industrial DSM within a constrained electricity grid, incorporating conventional electricity supply (flexibility) and RES. A model evaluation yields four key findings: (1) Grid-capacity constraints determine whether and to what extent industrial DSM may contribute economic and ecologic value. (2) Both the economic and ecologic value of industrial DSM are determined by the location within a capacity-constrained electricity grid. (3) DSM might even increase carbon emissions depending on local merit-orders. (4) Carbon emission pricing may resolve a potential conflict between ecologic and economic DSM-value maximization. Based on these findings, energy policy should (i) establish an electricity market design that provides sufficient local price signals for industrial DSM and (ii) ensure that local merit-orders incentivize industrial DSM to contribute both economic and ecologic value based on appropriate carbon prices.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > FINATRAX - Digital Financial Services and Cross-organizational Digital Transformations
Disciplines :
Management information systems Computer science
Author, co-author :
Rövekamp, Patrick; Research Center Finance & Information Management, Augsburg, Germany ; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Augsburg, Germany
Schöpf, Michael; SnT—Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
Wagon, Felix ; Research Center Finance & Information Management, Augsburg, Germany ; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Augsburg, Germany
WEIBELZAHL, Martin ✱; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > FINATRAX ; Research Center Finance & Information Management, Bayreuth, Germany ; Branch Business & Information Systems Engineering of the Fraunhofer FIT, Bayreuth, Germany ; University of Bayreuth, Bayreuth, Germany
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
For better or for worse? On the economic and ecologic value of industrial demand side management in constrained electricity grids
ACER. Framework Guideline on Demand Response. 2022, European Union Agency for the Cooperation of Energy Regulators https://acer.europa.eu/Official_documents/Acts_of_the_Agency/Framework_Guidelines/Framework%20Guidelines/FG_DemandResponse.pdf.
Albadi, M.H., El-Saadany, E.F., A summary of demand response in electricity markets. Elec. Power Syst. Res. 78 (2008), 1989–1996, 10.1016/j.epsr.2008.04.002.
Allard, S., Mima, S., Debusschere, V., Quoc, T.T., Criqui, P., Hadjsaid, N., European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration. Energy Econ., 87, 2020, 104733, 10.1016/j.eneco.2020.104733.
Ambrosius, M., Grimm, V., Sölch, C., Zöttl, G., Investment incentives for flexible demand options under different market designs. Energy Pol. 118 (2018), 372–389, 10.1016/j.enpol.2018.01.059.
Anke, C.-P., Hobbie, H., Schreiber, S., Möst, D., Coal phase-outs and carbon prices: interactions between EU emission trading and national carbon mitigation policies. Energy Pol., 144, 2020, 111647, 10.1016/j.enpol.2020.111647.
BDEW. Energy market Germany - 2020. https://www.bdew.de/media/documents/Energiemarkt_Deutschland_2020_englisch.pdf, 2020.
Behrangrad, M., A review of demand side management business models in the electricity market. Renew. Sustain. Energy Rev. 47 (2015), 270–283, 10.1016/j.rser.2015.03.033.
Bento, N., Wilson, C., Anadon, L.D., Time to get ready: conceptualizing the temporal and spatial dynamics of formative phases for energy technologies. Energy Pol. 119 (2018), 282–293, 10.1016/j.enpol.2018.04.015.
Bergaentzlé, C., Clastres, C., Khalfallah, H., Demand-side management and European environmental and energy goals: an optimal complementary approach. Energy Pol. 67 (2014), 858–869, 10.1016/j.enpol.2013.12.008.
Bertsch, J., Is an Inefficient Transmission Market Better than None at All? on Zonal and Nodal Pricing in Electricity Systems. 2015.
Bjørndal, M., Jørnsten, K., Zonal pricing in a deregulated electricity market. Energy J. 22 (2001), 51–73.
BMWK. The climate-neutral electricity system platform – in dialogue for a new market design. German federal ministry for economic affairs and climate action. https://www.bmwk.de/Redaktion/EN/Dossier/the-climate-neutral-electricity-system-platform.html, 2023.
Castro, P.M., Sun, L., Harjunkoski, I., Resource–task network formulations for industrial demand side management of a steel plant. Ind. Eng. Chem. Res. 52 (2013), 13046–13058, 10.1021/ie401044q.
Chao, H.-P., Peck, S.C., Reliability management in competitive electricity markets. J. Regul. Econ. 14 (1998), 189–200, 10.1023/A:1008061319181.
Clò, S., Cataldi, A., Zoppoli, P., The merit-order effect in the Italian power market: the impact of solar and wind generation on national wholesale electricity prices. Energy Pol. 77 (2015), 79–88, 10.1016/j.enpol.2014.11.038.
Cludius, J., Hermann, H., Matthes, F.C., Graichen, V., The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: estimation and distributional implications. Energy Econ. 44 (2014), 302–313, 10.1016/j.eneco.2014.04.020.
Ding, F., Fuller, J.D., Nodal, uniform, or zonal pricing: distribution of economic surplus. IEEE Trans. Power Syst. 20 (2005), 875–882, 10.1109/TPWRS.2005.846042.
Dowling, P., The impact of climate change on the European energy system. Energy Pol. 60 (2013), 406–417, 10.1016/j.enpol.2013.05.093.
ED Netze GmbH. Load profiles Germany by sector in 2017. https://www.ednetze.de/kunde/lieferanten/lastprofile-temperaturtabellen/02.08.2018, 2021.
Ehrenmann, A., Smeers, Y., Inefficiencies in European congestion management proposals. Util. Pol. 13 (2005), 135–152, 10.1016/j.jup.2004.12.007.
Federal Network Agency Germany. SMARD market data. https://www.smard.de/en/downloadcenter/download-market-data, 2021.
Finn, P., Fitzpatrick, C., Demand side management of industrial electricity consumption: promoting the use of renewable energy through real-time pricing. Appl. Energy 113 (2014), 11–21, 10.1016/j.apenergy.2013.07.003.
Gasparrini, A., Guo, Y., Sera, F., Vicedo-Cabrera, A.M., Huber, V., Tong, S., Sousa Zanotti Stagliorio Coelho, M. de, Nascimento Saldiva, P.H., Lavigne, E., Matus Correa, P., Valdes Ortega, N., Kan, H., Osorio, S., Kyselý, J., Urban, A., Jaakkola, J.J.K., Ryti, N.R.I., Pascal, M., Goodman, P.G., Zeka, A., Michelozzi, P., Scortichini, M., Hashizume, M., Honda, Y., Hurtado-Diaz, M., Cesar Cruz, J., Seposo, X., Kim, H., Tobias, A., Iñiguez, C., Forsberg, B., Åström, D.O., Ragettli, M.S., Guo, Y.L., Wu, C., Zanobetti, A., Schwartz, J., Bell, M.L., Dang, T.N., Van, D.D., Heaviside, C., Vardoulakis, S., Hajat, S., Haines, A., Armstrong, B., Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health 1 (2017), e360–e367, 10.1016/S2542-5196(17)30156-0.
German Wind Energy Association. The German Federal States in Comparison. 2021.
Germeshausen, R., Wölfing, N., How marginal is lignite? Two simple approaches to determine price-setting technologies in power markets. Energy Pol., 142, 2020, 111482, 10.1016/j.enpol.2020.111482.
Gils, H.C., Assessment of the theoretical demand response potential in Europe. Energy 67 (2014), 1–18, 10.1016/j.energy.2014.02.019.
Gonzalez-Salazar, M.A., Kirsten, T., Prchlik, L., Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev. 82 (2018), 1497–1513, 10.1016/j.rser.2017.05.278.
Göransson, L., Goop, J., Unger, T., Odenberger, M., Johnsson, F., Linkages between demand-side management and congestion in the European electricity transmission system. Energy 69 (2014), 860–872, 10.1016/j.energy.2014.03.083.
Grimm, V., Martin, A., Schmidt, M., Weibelzahl, M., Zöttl, G., Transmission and generation investment in electricity markets: the effects of market splitting and network fee regimes. Eur. J. Oper. Res. 254 (2016), 493–509, 10.1016/j.ejor.2016.03.044.
Grimm, V., Martin, A., Weibelzahl, M., Zöttl, G., On the long run effects of market splitting: why more price zones might decrease welfare. Energy Pol. 94 (2016), 453–467, 10.1016/j.enpol.2015.11.010.
Grimm, V., Sölch, C., Zöttl, G., Emissions reduction in a second-best world: on the long-term effects of overlapping regulations. SSRN Journal, 2021, 10.2139/ssrn.3904662.
Grimm, V., Zöttl, G., Rückel, B., Sölch, C., Regional Price Components in the Electricity Market. Report Commissioned by the Monopolies Commission in Preparation of the 71st Special Report on Energy., 2015.
Halbrügge, S., Heess, P., Schott, P., Weibelzahl, M., Negative electricity prices as a signal for lacking flexibility? On the effects of demand flexibility on electricity prices. IJESM, 2023, 10.1108/IJESM-12-2021-0005.
Harvey, S.M., Hogan, W.W., Nodal and Zonal Congestion Management and the Exercise of Market Power. 2000, Harvard University http://ksghome.harvard.edu/.whogan.cbg.ksg.
International Energy Agency. Key World Energy Statistics. 2021, International Energy Agency, 81.
International Energy Agency. Electricity final consumption by sector. https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20consumption&indicator=Electricity%20final%20consumption%20by%20sector, 2022.
Kirat, D., Ahamada, I., The impact of the European Union emission trading scheme on the electricity-generation sector. Energy Econ. 33 (2011), 995–1003, 10.1016/j.eneco.2011.01.012.
Körner, M.-F., The Digital and Sustainable Transformation of Electricity Systems : Understanding Information Systems Enabled Flexibility. 2021.
Kumar, A., Srivastava, S.C., Singh, S.N., Congestion management in competitive power market: a bibliographical survey. Elec. Power Syst. Res. 76 (2005), 153–164, 10.1016/j.epsr.2005.05.001.
Kumar, N., Besuner, P., Lefton, S., Agan, D., Hilleman, D., Power Plant Cycling Costs. 2012.
Ländner, E.-M., Märtz, A., Schöpf, M., Weibelzahl, M., From energy legislation to investment determination: shaping future electricity markets with different flexibility options. Energy Pol. 129 (2019), 1100–1110, 10.1016/j.enpol.2019.02.012.
Ludig, S., Haller, M., Schmid, E., Bauer, N., Fluctuating renewables in a long-term climate change mitigation strategy. Energy 36 (2011), 6674–6685, 10.1016/j.energy.2011.08.021.
Lund, P.D., Lindgren, J., Mikkola, J., Salpakari, J., Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 45 (2015), 785–807, 10.1016/j.rser.2015.01.057.
Mathiesen, B.V., Lund, H., Connolly, D., Wenzel, H., Østergaard, P.A., Möller, B., Nielsen, S., Ridjan, I., Karnøe, P., Sperling, K., Hvelplund, F.K., Smart Energy Systems for Coherent 100% Renewable Energy and Transport Solutions, vol. 145, 2015, Elsevier Ltd. Applied Energy, 139–154, 10.1016/j.apenergy.2015.01.075 139-154.
Neuhoff, K., Barquin, J., Bialek, J.W., Boyd, R., Dent, C.J., Echavarren, F., Grau, T., von Hirschhausen, C., Hobbs, B.F., Kunz, F., Nabe, C., Papaefthymiou, G., Weber, C., Weigt, H., Renewable electric energy integration: quantifying the value of design of markets for international transmission capacity. Energy Econ. 40 (2013), 760–772, 10.1016/j.eneco.2013.09.004.
Oggioni, G., Smeers, Y., Allevi, E., Schaible, S., A generalized nash equilibrium model of market coupling in the European power system. Network. Spatial Econ. 12 (2012), 503–560, 10.1007/s11067-011-9166-7.
Palensky, P., Dietrich, D., Demand side management: demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inf. 7 (2011), 381–388.
Pechan, A., Where do all the windmills go? Influence of the institutional setting on the spatial distribution of renewable energy installation. Energy Econ. 65 (2017), 75–86, 10.1016/j.eneco.2017.04.034.
Ram, M., Child, M., Aghahosseini, A., Bogdanov, D., Lohrmann, A., Breyer, C., A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. J. Clean. Prod. 199 (2018), 687–704, 10.1016/j.jclepro.2018.07.159.
Ramachandran, P., Senthil, R., Locational marginal pricing approach to minimize congestion in restructured power market. J. Electr. Electron. Eng. Res., 2, 2010.
Rausch, B., Staudt, P., Weinhardt, C., Transmission Grid Congestion Data and Directions for Future Research. 2019, Association for Computing Machinery, Inc, 443–446.
Renewable Energy Agency. Installed Photovoltaic Capacity by German Federal State. 2021.
Sauer, A., Abele, E., Buhl, H.U., (eds.) Energieflexibilität in der deutschen Industrie: Ergebnisse aus dem Kopernikus-Projekt - Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung - SynErgie, 2019, Fraunhofer Verlag, Stuttgart, 728.
Sauer, A., Buhl, H.U., Mitsos, A., Weigold, M., (eds.) Energieflexibilität in der deutschen Industrie: Band 2: Markt- und Stromsystem, Managementsysteme und Technologien energieflexibler Fabriken, 2022, Fraunhofer Verlag, Stuttgart, 535.
Scarabello, G., Rech, S., Lazzaretto, A., Christidis, A., Tsatsaronis, G., Optimization of Thermal Power Plants Operation in the German De-regulated Electricity Market Using Dynamic Programming. 2012, American Society of Mechanical Engineers, 147–160.
Schermeyer, H., Vergara, C., Fichtner, W., Renewable energy curtailment: a case study on today's and tomorrow's congestion management. Energy Pol. 112 (2018), 427–436, 10.1016/j.enpol.2017.10.037.
Schill, W.-P., Pahle, M., Gambardella, C., Start-up costs of thermal power plants in markets with increasing shares of variable renewable generation. Nat. Energy, 2, 2017, 17050, 10.1038/nenergy.2017.50.
Seljom, P., Rosenberg, E., Fidje, A., Haugen, J.E., Meir, M., Rekstad, J., Jarlset, T., Modelling the effects of climate change on the energy system—a case study of Norway. Energy Pol. 39 (2011), 7310–7321, 10.1016/j.enpol.2011.08.054.
Sensfuß, F., Ragwitz, M., Genoese, M., The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Pol. 36 (2008), 3086–3094, 10.1016/j.enpol.2008.03.035.
Sijm, J., Bakker, S., Chen, Y., Harmsen, H.W., Lise, W., CO/sub 2/Price Dynamics: the Implications of EU Emissions Trading for Electricity Prices & Operations. 2006, IEEE, 4.
Steurer, M., Analyse von Demand Side Integration im Hinblick auf eine effiziente und umweltfreundliche Energieversorgung. 2017.
Stoft, S., Power Economics: Designing Markets for Electricity. 2001, Wiley-Academy, Chichester, 300.
Strbac, G., Demand side management: benefits and challenges. Energy Pol. 36 (2008), 4419–4426, 10.1016/j.enpol.2008.09.030.
Thema, M., Sterner, M., Lenck, T., Götz, P., Necessity and impact of power-to-gas on energy transition in Germany. Energy Proc. 99 (2016), 392–400, 10.1016/j.egypro.2016.10.129.
Voosen, P., A 500-million-year survey of Earth's climate reveals dire warning for humanity. Science Magazine, 2019, 10.1126/science.aay1323.
Weibelzahl, M., Nodal, zonal, or uniform electricity pricing: how to deal with network congestion. Front. Energy 11 (2017), 210–232, 10.1007/s11708-017-0460-z.
Weibelzahl, M., Märtz, A., On the effects of storage facilities on optimal zonal pricing in electricity markets. Energy Pol. 113 (2018), 778–794, 10.1016/j.enpol.2017.11.018.
Zhang, Q., Grossmann, I.E., Planning and scheduling for industrial demand side management: advances and challenges. Alternative energy sources and technologies: process design and operation. 383–414 https://doi.org/10.1007/978-3-319-28752-2_14, 2016.