Five-factor model; Machine learning; Neural networks; Personality assessment; Short measures; Ten-Item Personality Inventory; Test construction; Five-Factor Model; Personality assessments; Test constructions; Computer Science (all); Mathematics (all)
Abstract :
[en] This study aims to present a new method of exploring construct validity of questionnaires based on neural network. Using this test we further explore convergent validity for Russian adaptation of TIPI (Ten-Item Personality Inventory by Gosling, Rentfrow, and Swann). Due to small number of questions TIPI-RU can be used as an express-method for surveying large number of people, especially in the Internet-studies. It can be also used with other translations of the same questionnaire in the intercultural studies. The neural network test for construct validity can be used as more convenient substitute for path model.
Disciplines :
Computer science
Author, co-author :
SERGEEVA, Anastasia ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment ; ITMO University, Saint Petersburg, Russian Federation
Kirillov, Bogdan; Skolkovo Institute of Science and Technology, Moscow, Russian Federation
Dzhumagulova, Alyona; ITMO University, Saint Petersburg, Russian Federation
External co-authors :
yes
Language :
English
Title :
Neural network-based exploration of construct validity for russian version of the 10-item big five inventory
Publication date :
2018
Event name :
Digital Transformation and Global Society - Third International Conference, DTGS 2018
Event place :
St. Petersburg, Russia
Event date :
from 30.05.2018 to 02.06.2018
Audience :
International
Main work title :
Digital Transformation and Global Society - Third International Conference, DTGS 2018, Revised Selected Papers
Abadi, M.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorow.org/
Campbell, D.T., Fiske, D.W.: Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 56(2), 81 (1959). https://doi.org/10.1037/h0046016
Chiorri, C., Bracco, F., Piccinno, T., Modafferi, C., Battini, V.: Psychometric properties of a revised version of the Ten-item Personality Inventory. Eur. J. Psychol. Assess. 31(2), 109–119 (2015). https://doi.org/10.1027/1015-5759/a000215
Chollet, F.: Keras (2015). https://github.com/fchollet/keras
Crede, M., Harms, P., Niehorster, S., Gaye-Valentine, A.: An evaluation of the consequences of using short measures of the Big Five personality traits. J. Pers. Soc. Psychol. 102(4), 874 (2012)
Divergence video (2018). https://youtu.be/kRuk0Pechxg
Furr, R.M.: Psychometrics: An Introduction. Sage Publications, Thousand Oaks (2017)
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT press, Cambridge (2016)
Gosling, S.D., Rentfrow, P.J., Swann, W.B.J.: A very brief measure of the Big-Five personality domains. J. Res. Pers. 37, 504–528 (2003)
Gunnarsson, M., Gustavsson, P., Holmberg, S., Weibull, L.: Statistical evaluation of six short Five Factor Model personality measures aiming for potential inclusion in the SOM Institute’s national surveys (2015)
Herzberg, P.Y., Brähler, E.: Assessing the Big-Five personality domains via short forms. A cautionary note and a proposal. Eur. J. Psychol. Assess. 22, 139–148 (2006)
Hofmans, J., Kuppens, P., Allik, J.: Is short in length short in content? An examination of the domain representation of the Ten Item Personality Inventory scales in Dutch language. Pers. Individ. Differ. 45(8), 750–755 (2008)
John, O.P., Srivastava, S.: The Big-Five trait taxonomy: history, measurement, and theoretical perspectives. In: Pervin, L., John, O. (eds.) Handbook of personality: Theory and research, pp. 102–138. Guilford Press, New York (1999)
Jones, E., Oliphant, T., Peterson, P.: SciPy: open source scientific tools for Python (2014)
Kornilova, T., Chumakova, M.: Development of the Russian version of the brief Big Five questionnaire (TIPI). Psikhologicheskie Issledovaniya 9(46), 5 (2016)
Laguna, M., Bak, W., Purc, E., Mielniczuk, E., Oles, P.K.: Short measure of personality TIPI-P in a Polish sample. Roczniki Psychologiczne 17(2), 421–437 (2014)
Montavon, G., Samek, W., Müller, K.-R.: Methods for interpreting and understanding deep neural networks. Digital Signal Processing (2017). https://doi.org/10.1016/j.dsp.2017.10.011
Muck, P.M., Hell, B., Gosling, S.D.: Construct validation of a short five-factor model instrument: a self-peer study on the German adaptation o the Ten-Item Personality Inventory (TIPI-G). Eur. J. Psychol. Assess. 23, 166–175 (2007)
Oshio, A., Abe, S., Cutrone, P.: Development, reliability, and validity of the Japanese version of Ten Item Personality Inventory (TIPI-J). Jpn. J. Pers. 21, 40–52 (2012)
Renau, V., Oberst, U., Gosling, S.D., Rusifffdfffdol, J., Chamarro, A.: Translation and validation of the Ten-Item-Personality Inventory into Spanish and Catalan. Aloma. Revista de Psicologia, Cincies de l’Educació i de l’Esport 31, 85–97(2013)
Romero, E., Villar, P., Gfffdfffdmez-Fraquela, J., Lfffdfffdpez-Romero, L.: Measuring personality traits with ultra-short scales: a study of the Ten Item-Personality Inventory (TIPI) in a Spanish sample. Pers. Individ. Differ. 3, 289–293 (2012)
Sergeeva, A., Kirillov, B., Dzhumagulova, A.: Translation and adaptation of short five factor personality questionnaire (TIPI-RU): convergent validity, internal consistency and test-retest reliability evaluation. Eksperimentalnaya psikhologiya 9(3), 138–154 (2016). https://doi.org/10.17759/exppsy.2016090311
TIPI-RU data (2017). https://github.com/bakirillov/tipiru