Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Pitfalls and Shortcomings for Decompositions and Alignment
LAMBIN, Baptiste; Leander, Gregor; Neumann, Patrick
2023 • In Hazay, Carmit (Ed.) Advances in Cryptology – EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2023, Proceedings
[en] In this paper we, for the first time, study the question under which circumstances decomposing a round function of a Substitution-Permutation Network is possible uniquely. More precisely, we provide necessary and sufficient criteria for the non-linear layer on when a decomposition is unique. Our results in particular imply that, when cryptographically strong S-boxes are used, the decomposition is indeed unique. We then apply our findings to the notion of alignment, pointing out that the previous definition allows for primitives that are both aligned and unaligned simultaneously. As a second result, we present experimental data that shows that alignment might only have limited impact. For this, we compare aligned and unaligned versions of the cipher PRESENT.
Disciplines :
Computer science
Author, co-author :
LAMBIN, Baptiste ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Cryptolux ; Ruhr University Bochum, Bochum, Germany
Leander, Gregor ; Ruhr University Bochum, Bochum, Germany
Neumann, Patrick ; Ruhr University Bochum, Bochum, Germany
External co-authors :
no
Language :
English
Title :
Pitfalls and Shortcomings for Decompositions and Alignment
Publication date :
15 April 2023
Event name :
Eurocrypt 2023
Event place :
Lyon, Fra
Event date :
23-04-2023 => 27-04-2023
Main work title :
Advances in Cryptology – EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2023, Proceedings
Editor :
Hazay, Carmit
Publisher :
Springer Science and Business Media Deutschland GmbH
Aldaya, A.C., García, C.P., Brumley, B.B.: From A to Z: projective coordinates leakage in the wild. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 428–453 (2020)
Baksi, A., et al.: DEFAULT: cipher level resistance against differential fault attack. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 124– 156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3 5
Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against invariant attacks: how to choose the round constants. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 647–678. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0 22
Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweakable block cipher with efficient protection against DFA attacks. IACR Trans. Symmetric Cryptol. 2019(1), 5–45 (2019)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On alignment in Keccak. In: ECRYPT II Hash Workshop, vol. 51, pp. 122 (2011)
Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 395–405. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 24
Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31
Bordes, N., Daemen, J., Kuijsters, D., Van Assche, G.: Thinking outside the super-box. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 337– 367. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 12
Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryptol. 2020(S1), 160–207 (2020)
Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021)
Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subterranean 2.0 cipher suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–294 (2020)
Eichlseder, M., Kales, D.: Clustering related-tweak characteristics: application to MANTIS-6. IACR Trans. Symmetric Cryptol. 2018(2), 111–132 (2018)
Flórez-Gutiérrez, A., Naya-Plasencia, M.: Improving key-recovery in linear attacks: application to 28-round PRESENT. In: Canteaut, A., Ishai, Y. (eds.) EURO-CRYPT 2020. LNCS, vol. 12105, pp. 221–249. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 9
Hall-Andersen, M., Vejre, P.S.: Generating graphs packed with paths estimation of linear approximations and differentials. IACR Trans. Symmetric Cryptol. 2018(3), 265–289 (2018)
Kündgen, A., Leander, G., Thomassen, C.: Switchings, extensions, and reductions in central digraphs. J. Comb. Theory Ser. A 118(7), 2025–2034 (2011)
Lambin, B., Leander, G., Neumann, P.: Pitfalls and shortcomings for decompo-sitions and alignment (full version). Cryptology ePrint Archive, Paper 2023/240 (2023). https://eprint.iacr.org/2023/240
Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 18
Leander, G., Rasoolzadeh, S.: Two sides of the same coin: weak-keys and more efficient variants of CRAFT. IACR Cryptology ePrint Archive, p. 238 (2021)
Liu, G., Qiu, W., Yi, T.: New techniques for searching differential trails in Keccak. IACR Trans. Symmetric Cryptol. 2019(4), 407–437 (2020)
McCreesh, C., Prosser, P., Trimble, J.: The Glasgow subgraph solver: using constraint programming to tackle hard subgraph isomorphism problem variants. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 316–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6 19
Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 6
Reis, T.B.S., Aranha, D.F., López, J.: PRESENT runs fast. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 644–664. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 31
Shannon, C.E.: A mathematical theory of cryptography. Mathematical Theory of Cryptography (1945)
Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016, Part II. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi. org/10.1007/978-3-319-40367-0 24