No full text
Eprint already available on another site (E-prints, Working papers and Research blog)
Empirical Standards for Software Engineering Research
Ralph, Paul; bin Ali, Nauman; Baltes, Sebastian et al.
2020
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Computer Science - Software Engineering
Abstract :
[en] Empirical Standards are natural-language models of a scientific community's expectations for a specific kind of study (e.g. a questionnaire survey). The ACM SIGSOFT Paper and Peer Review Quality Initiative generated empirical standards for research methods commonly used in software engineering. These living documents, which should be continuously revised to reflect evolving consensus around research best practices, will improve research quality and make peer review more effective, reliable, transparent and fair.
Disciplines :
Computer science
Author, co-author :
Ralph, Paul
bin Ali, Nauman
Baltes, Sebastian
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Diaz, Jessica
Dittrich, Yvonne
Ernst, Neil
Felderer, Michael
Feldt, Robert
Filieri, Antonio
Bernard Nicolau de França, Breno
Alberto Furia, Carlo
Gay, Greg
Gold, Nicolas
Graziotin, Daniel
He, Pinjia
Hoda, Rashina
Juristo, Natalia
Kitchenham, Barbara
Lenarduzzi, Valentina
Martínez, Jorge
Melegati, Jorge
Mendez, Daniel
Menzies, Tim
Molleri, Jefferson
Pfahl, Dietmar
Robbes, Romain
Russo, Daniel
Saarimäki, Nyyti
Sarro, Federica
Taibi, Davide
Siegmund, Janet
Spinellis, Diomidis
Staron, Miroslaw
Stol, Klaas
Storey, Margaret-Anne
Taibi, Davide
Tamburri, Damian
Torchiano, Marco
Treude, Christoph
Turhan, Burak
Wang, Xiaofeng
Vegas, Sira
More authors (33 more) Less
Language :
English
Title :
Empirical Standards for Software Engineering Research
Publication date :
October 2020
Commentary :
For the complete standards, supplements and other resources, see https://github.com/acmsigsoft/EmpiricalStandards
Available on ORBilu :
since 22 November 2023

Statistics


Number of views
60 (0 by Unilu)
Number of downloads
0 (0 by Unilu)

Bibliography


Similar publications



Contact ORBilu