Chemical vapor deposition; Diffusion maps; Gappy POD; Geometric harmonics; Nonlinear manifold learning; Chemical vapour deposition; Mass-fraction; Non-linear manifold learning; Partial data; Partial observation; Process parameters; Work-flows; Chemical Engineering (all); Computer Science Applications; Mathematics - Numerical Analysis; Computer Science - Numerical Analysis; General Chemical Engineering
Abstract :
[en] A data-driven framework is presented, that enables the prediction of quantities, either observations or parameters, given sufficient partial data. The framework is illustrated via a computational model of the deposition of Cu in a Chemical Vapor Deposition (CVD) reactor, where the reactor pressure, the deposition temperature and feed mass flow rate are important process parameters that determine the outcome of the process. The sampled observations are high-dimensional vectors containing the outputs of a detailed CFD steady-state model of the process, i.e. the values of velocity, pressure, temperature, and species mass fractions at each point in the discretization. A machine learning workflow is presented, able to predict out-of-sample (a) observations (e.g. mass fraction in the reactor), given process parameters (e.g. inlet temperature); (b) process parameters, given observation data; and (c) partial observations (e.g. temperature in the reactor), given other partial observations (e.g. mass fraction in the reactor). The proposed workflow relies on two manifold learning schemes: Diffusion Maps and the associated Geometric Harmonics. Diffusion Maps are used for discovering a reduced representation of the available data, and Geometric Harmonics for extending functions defined on the discovered manifold. In our work a special use case of Geometric Harmonics is formulated and implemented, which we call Double Diffusion Maps, to map from the reduced representation back to (partial) observations and process parameters. A comparison of our manifold learning scheme to the traditional Gappy-POD approach is provided: ours can be thought of as a “Gappy DMAPs” approach. The presented methodology is easily transferable to application domains beyond reactor engineering.
Disciplines :
Chemical engineering
Author, co-author :
KORONAKI, Eleni ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; School of Chemical Engineering, National Technical University of Athens, Attiki, Greece
Evangelou, Nikolaos ; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
Psarellis, Yorgos M. ; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
Boudouvis, Andreas G.; School of Chemical Engineering, National Technical University of Athens, Attiki, Greece
Kevrekidis, Ioannis G.; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, United States
External co-authors :
yes
Language :
English
Title :
From partial data to out-of-sample parameter and observation estimation with diffusion maps and geometric harmonics
The work of YGK, NE and YMP was partially supported by the US AFOSR FA9550-21-0317 and the US DOE SA22-0052-S001 . E.D.K. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 890676 - DataProMat.The work of YGK, NE and YMP was partially supported by the US AFOSR FA9550-21-0317 and the US DOE SA22-0052-S001. E.D.K. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 890676 - DataProMat.
Akiki, G., Suchet, D., Daineka, D., Filonovich, S., Bulkin, P., Johnson, E.V., Area selective deposition of silicon by plasma enhanced chemical vapor deposition using a fluorinated precursor. Appl. Surf. Sci., 531, 2020, 147305.
Alhajeri, M.S., Wu, Z., Rincon, D., Albalawi, F., Christofides, P.D., Machine-learning-based state estimation and predictive control of nonlinear processes. Chem. Eng. Res. Des. 167 (2021), 268–280.
Alonso, A.A., Frouzakis, C.E., Kevrekidis, I.G., Optimal sensor placement for state reconstruction of distributed process systems. AIChE J. 50:7 (2004), 1438–1452.
Alonso, A.A., Kevrekidis, I.G., Banga, J.R., Frouzakis, C.E., Optimal sensor location and reduced order observer design for distributed process systems. Comput. Chem. Eng. 28:1–2 (2004), 27–35.
Balasubramanian, M., Schwartz, E.L., Tenenbaum, J.B., de Silva, V., Langford, J.C., The isomap algorithm and topological stability. Science, 295(5552), 2002, 7.
Bhattacharjee, S., Matouš, K., A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials. J. Comput. Phys. 313 (2016), 635–653.
Cassez, F., Tripakis, S., Fault diagnosis with static and dynamic observers. Fund. Inform. 88:4 (2008), 497–540.
Chiavazzo, E., Gear, C.W., Dsilva, C.J., Rabin, N., Kevrekidis, I.G., Reduced models in chemical kinetics via nonlinear data-mining. Processes 2:1 (2014), 112–140.
Chiu, T.Y., Christofides, P.D., Robust control of particulate processes using uncertain population balances. AIChE J. 46:2 (2000), 266–280.
Coifman, R.R., Kevrekidis, I.G., Lafon, S., Maggioni, M., Nadler, B., Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems. Multiscale Model. Simul. 7:2 (2008), 842–864.
Coifman, R.R., Lafon, S., Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21:1 (2006), 31–52.
Desenfant, A., Laduye, G., Vignoles, G., Chollon, G., Kinetic and gas-phase study of the chemical vapor deposition of silicon carbide from C2H3SiCl3/H2. J. Ind. Eng. Chem. 94 (2021), 145–158.
Deshpande, S., Lengiewicz, J., Bordas, S.P., Probabilistic deep learning for real-time large deformation simulations. Comput. Methods Appl. Mech. Engrg., 398, 2022, 115307.
Dsilva, C.J., Talmon, R., Coifman, R.R., Kevrekidis, I.G., Parsimonious representation of nonlinear dynamical systems through manifold learning: A chemotaxis case study. Appl. Comput. Harmon. Anal. 44:3 (2018), 759–773.
Evangelou, N., Dietrich, F., Chiavazzo, E., Lehmberg, D., Meila, M., Kevrekidis, I.G., Double diffusion maps and their latent harmonics for scientific computations in latent space. J. Comput. Phys., 485, 2023, 112072.
Evangelou, N., Wichrowski, N.J., Kevrekidis, G.A., Dietrich, F., Kooshkbaghi, M., McFann, S., Kevrekidis, I.G., On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non) identifiability. PNAS Nexus, 1(4), 2022, pgac154.
Everson, R., Sirovich, L., Karhunen–Loeve procedure for gappy data. J. Opt. Soc. Amer. A 12:8 (1995), 1657–1664.
Fowlkes, C., Belongie, S., Malik, J., Efficient spatiotemporal grouping using the nystrom method. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, CVPR 2001, 2001, IEEE, I.
Giovanis, D.G., Shields, M.D., Data-driven surrogates for high dimensional models using Gaussian process regression on the grassmann manifold. Comput. Methods Appl. Mech. Engrg., 370, 2020, 113269.
Gkinis, P., Koronaki, E., Skouteris, A., Aviziotis, I., Boudouvis, A., Building a data-driven reduced order model of a chemical vapor deposition process from low-fidelity CFD simulations. Chem. Eng. Sci. 199 (2019), 371–380.
Gleason, K.K., Chapter 5 - Fluoropolymers by initiated chemical vapor deposition (iCVD). Ameduri, B., Fomin, S., (eds.) Opportunities for Fluoropolymers Progress in Fluorine Science, 2020, Elsevier, 113–135, 10.1016/B978-0-12-821966-9.00005-5.
Holiday, A., Kooshkbaghi, M., Bello-Rivas, J.M., Gear, C.W., Zagaris, A., Kevrekidis, I.G., Manifold learning for parameter reduction. J. Comput. Phys. 392 (2019), 419–431.
Jo, T., Koo, B., Kim, H., Lee, D., Yoon, J.Y., Effective sensor placement in a steam reformer using gappy proper orthogonal decomposition. Appl. Therm. Eng. 154 (2019), 419–432, 10.1016/j.applthermaleng.2019.03.089.
Kazantzis, N., Huynh, N., Wright, R.A., Nonlinear observer design for the slow states of a singularly perturbed system. Comput. Chem. Eng. 29:4 (2005), 797–806.
Kazantzis, N., Kravaris, C., Nonlinear observer design using Lyapunov's auxiliary theorem. Systems Control Lett. 34:5 (1998), 241–247.
Khatibi, S., Cassol, G.O., Dubljevic, S., Model predictive control of a non-isothermal axial dispersion tubular reactor with recycle. Comput. Chem. Eng., 145, 2021, 107159.
Koronaki, E., Cheimarios, N., Laux, H., Boudouvis, A., Non-axisymmetric flow fields in axisymmetric CVD reactor setups revisited: influence on the film's non-uniformity. ECS Solid State Lett., 3(4), 2014, P37.
Koronaki, E., Gakis, G., Cheimarios, N., Boudouvis, A., Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software. Chem. Eng. Sci. 150 (2016), 26–34.
Koronaki, E., Gkinis, P., Beex, L., Bordas, S., Theodoropoulos, C., Boudouvis, A., Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity. Comput. Chem. Eng. 121 (2019), 148–157, 10.1016/j.compchemeng.2018.08.023.
Luenberger, D.G., Observing the state of a linear system. IEEE Trans. Mil. Electron. 8:2 (1964), 74–80.
Martin-Linares, C.P., Psarellis, Y.M., Karapetsas, G., Koronaki, E.D., Kevrekidis, I.G., Physics-agnostic and physics-infused machine learning for thin films flows: modeling, and predictions from small data. 2023 arXiv:2301.12508.
Nishinaka, H., Nagaoka, T., Kajita, Y., Yoshimoto, M., Rapid homoepitaxial growth of (010) β-Ga2O3 thin films via mist chemical vapor deposition. Mater. Sci. Semicond. Process., 128, 2021, 105732.
Nyström, E.J., Über die praktische auflösung von linearen integralgleichungen mit anwendungen auf randwertaufgaben der potentialtheorie. 1929, Akademische Buchhandlung.
Papavasileiou, P., Koronaki, E.D., Pozzetti, G., Kathrein, M., Czettl, C., Boudouvis, A.G., Bordas, S.P., Equation-based and data-driven modeling strategies for industrial coating processes. Comput. Ind., 149, 2023, 103938.
Papavasileiou, P., Koronaki, E.D., Pozzetti, G., Kathrein, M., Czettl, C., Boudouvis, A.G., Mountziaris, T., Bordas, S.P., An efficient chemistry-enhanced CFD model for the investigation of the rate-limiting mechanisms in industrial chemical vapor deposition reactors. Chem. Eng. Res. Des. 186 (2022), 314–325.
Park, J.-K., Shin, D.-R., Chung, T.M., Dynamic observers for linear time-invariant systems. Automatica 38:6 (2002), 1083–1087.
Patel, N., Corbett, B., Mhaskar, P., Model predictive control using subspace model identification. Comput. Chem. Eng., 149, 2021, 107276.
Psarellis, G.M., Aviziotis, I.G., Duguet, T., Vahlas, C., Koronaki, E.D., Boudouvis, A.G., Investigation of reaction mechanisms in the chemical vapor deposition of Al from DMEAA. Chem. Eng. Sci. 177 (2018), 464–470.
Roweis, S.T., Saul, L.K., Nonlinear dimensionality reduction by locally linear embedding. Science 290:5500 (2000), 2323–2326.
Spencer, R., Gkinis, P., Koronaki, E., Gerogiorgis, D., Bordas, S., Boudouvis, A., Investigation of the chemical vapor deposition of Cu from copper amidinate through data driven efficient CFD modelling. Comput. Chem. Eng., 149, 2021, 107289.
Whitney, H., Differentiable manifolds. Ann. of Math., 1936, 645–680.
Willcox, K., Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. & Fluids 35:2 (2006), 208–226.
Xing, X., Dao, M.H., Zhang, B., Lou, J., Tan, W.S., Cui, Y., Khoo, B.C., Fusing sensor data with CFD results using gappy POD. Ocean Eng., 246, 2022, 110549, 10.1016/j.oceaneng.2022.110549.
Xing, W., Triantafyllidis, V., Shah, A.A., Nair, P., Zabaras, N., Manifold learning for the emulation of spatial fields from computational models. J. Comput. Phys. 326 (2016), 666–690.