Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] This study presents a framework for regional smart energy planning for the optimal location and sizing of small hybrid systems. By using an optimization model - in combination with weather data - various local energy systems are simulated using the Calliope and PyPSA energy system simulation tools. The optimization and simulation models are fed with GIS data from different volunteered geographic information projects, including OpenStreetMap. These allow automatic allocation of specific demand profiles to diverse OpenStreetMap building categories. Moreover, based on the characteristics of the OpenStreetMap data, a set of possible distributed energy resources, including renewables and fossil-fueled generators, is defined for each building category. The optimization model can be applied for a set of scenarios based on different assumptions on electricity prices and technologies. Moreover, to assess the impact of the scenarios on the current distribution infrastructure, a simulation model of the low- and medium-voltage network is conducted. Finally, to facilitate their dissemination, the results of the simulation are stored in a PostgreSQL database, before they are delivered by a RESTful Laravel Server and displayed in an angular web application.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Valdes, Javier; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
Wöllmann, Sebastian; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
Weber, Andreas; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
Klaus, Grégoire; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
Sigl, Christina; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
Prem, Matthias; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
BAUER, Robert ; University of Luxembourg ; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
Zink, Roland; Institute for Applied Informatics, Technische Hochschule Deggendorf, Freyung, Germany
External co-authors :
yes
Language :
English
Title :
A framework for regional smart energy planning using volunteered geographic information
Acknowledgements. We would like to thank two anonymous reviewers, the editor of the special issue and the publisher’s correction service. Moreover we would like to thank The German Federal Ministry of Education and Research for their funding support.
Abbasabadi, N. and Ashayeri, M.: Urban energy use modeling methods and tools: A review and an outlook, Build. Environ., 161, 106270, https://doi.org/10.1016/j.buildenv.2019.106270, 2019.
Abdulrahman, I. and Radman, G.: Power system spatial analysis and visualization using geographic information system (GIS), Spat. Inf. Res., 28, 101-112, https://doi.org/10.1007/s41324-019-00276-y, 2020.
Alhamwi, A., Medjroubi, W., Vogt, T., and Agert, C.: GISbased urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas, Appl. Energ., 191, 1-9, https://doi.org/10.1016/j.apenergy.2017.01.048, 2017.
Alhamwi, A., Medjroubi, W., Vogt, T., and Agert, C: Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems, Appl. Energ., 251, 113360, https://doi.org/10.1016/j.apenergy.2019.113360, 2019.
Amme, J., Pleßmann, G., Buhler, J., Hulk, L., Kotter, E., and Schwaegerl, P.: The eGo grid model: An open-source and opendata based synthetic medium-voltage grid model for distribution power supply systems, J. Phys. Conf. Ser., 977, 012007, https://doi.org/10.1016/j.ejor.2018.01.036, 2018.
Barron, C., Neis, P., and Zipf, A.: A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis: A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis, T. GIS, 18, 877-895, https://doi.org/10.1111/tgis.12073, 2014.
Bavarian Government: Geoportal Bayern, available at: https:// geoportal.bayern.de/geoportalbayern/, last access: 11 June 2020.
Brown, T., Hörsch, J. and Schlachtberger, D.: PyPSA: Python for Power System Analysis, Journal of Open Research Software, 6, 09913, https://doi.org/10.5334/jors.188, 2018.
BUM, Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety: Eckpunkte zur Ausgestaltung eines nationalen Emissionshandels für Wärme und Verkehr, Klimaschutzprogramm 2030, 9, 2019.
Dorfner, J: Open source modelling and optimisation of energy infrastructure at urban scale, PhD Dissertation, Technische Universität München, München, 2016.
Friedl, M., Meier, B., Ruoss, F., and Schmidlin, L.: Thermodynamik von Power-to-Gas, Hochschule für Technik, Rapperswil, Institut für Energietechnik, 67, Version 2.1, available at: https://www.iet.hsr.ch/fileadmin/user_upload/iet.hsr.ch/ Power-to-Gas/scripts/Skript_Power-to-Gas_V2.1.pdf (last access: 11 November 2020), 2017.
Fünfgeld, C. and Tiefemann, R.: Anwendung der Represäntativen VDEW-Lastprofile step-by-step, Vereinigung Deutscher Elektrizitätswerke e.V. (VDEW), Frankfurt am Main, Germany, available at: https://www.bdew.de/media/documents/ Umsetzung-der-Analytischen-Lastprofilverfahren-Step-by-step. pdf (last access: 11 November 2020), 2000.
Geiß, C., Taubenböck, H., Wurm, M., Esch, T., Nast, M., Schillings, C., and Blaschke, T.: Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat, Remote Sensing, 3, 1447-1471, https://doi.org/10.3390/rs3071447, 2011.
Groissböck, M. and Gusmao, A.: Impact of high renewable penetration scenarios on system reliability: two case studies in the Kingdom of Saudi Arabia, arXiv [preprint], arXiv:1709.03761, 2017.
Grzanic, M., Flammini, M. G., and Prettico, G.: Distribution Network Model Platform: A First Case Study, Energies, 12, 4079, https://doi.org/10.3390/en12214079, 2019.
Hagberg, A., Pieter S., and Chult D.: Exploring network structure, dynamics, and function using NetworkX. No. LA-UR-08-05495; LA-UR-08-5495, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
Haklay, M. and Weber, P.: "Openstreetmap: User-generated street maps", IEEE Pervas. Comput., 7.4, 12-18, 2008.
Heinrich, P.: Verkaufsfläche von Vertriebslinien im Lebensmitteleinzelhandel in Deutschland 2018, Statista, available at: https://de.statista.com/statistik/daten/studie/202106/umfrage/ (last access: 30 March 2020), 2019.
Hilbers, A. P., Brayshaw, D. J., and Gandy, A.: Importance Subsampling: Improving Power System Planning under Climate-Based Uncertainty, Appl. Energ., 251, 113114, https://doi.org/10.1016/j.apenergy.2019.04.110, 2019.
Heussen, K., Koch, S., Ulbig, A., and Andersson, G.: Energy storage in power system operation: The power nodes modeling framework, in: 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Gothenburg, Sweden, 1-8, https://doi.org/10.1109/ISGTEUROPE.2010.5638865, 2010.
Hörsch, J. and Calitz, J.: PyPSA-ZA: Investment and operation cooptimization of integrating wind and solar in South Africa at high spatial and temporal detail, arXiv:1710.11199 [physics], arXiv [preprint], arXiv:1710.11199, 2017.
Hörsch, J., Hofmann, F., Schlachtberger, D. and Brown, T.: PyPSA-Eur: An Open Optimisation Model of the European Transmission System, Energy Strateg. Rev., 22, 207-215, https://doi.org/10.1016/j.esr.2018.08.012, 2018.
Kaspar, F., Niermann, D., Borsche, M., Fiedler, S., Keller, J., Potthast, R., Rösch, T., Spangehl, T., and Tinz, B.: Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy, Adv. Sci. Res., 17, 115-128, https://doi.org/10.5194/asr-17-115-2020, 2020.
Kays, J., Seack, A., Smirek, T.,Westkamp, F., and Rehtanz, C.: The Generation of Distribution Grid Models on the Basis of Public Available Data, IEEE T. Power Syst., 32, 2346-2353, 2017.
Kriechbaum, L., Scheiber, G., and Kienberger, T.: Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges, Energ. Sustain. Soc., 8, 35, https://doi.org/10.1186/s13705-018-0176-x, 2018.
Krog, L. and Sperling, K.: A comprehensive framework for strategic energy planning based on Danish and international insights, Energy Strateg. Rev., 24, 83-93, https://doi.org/10.1016/j.esr.2019.02.005, 2019.
Krüger, T., Andres, S., Walther, M., Klein, K., and Segerer, M.: Handelsverband Deutschland (HDE)-Kurzlink Studie Qualifizierte Nahversorgung, available at: https://einzelhandel.de/ nahversorgungsstudie (last access: 30 March 2020), 2013.
McKenna, R., Bertsch, V., Mainzer, K., and Fichtner, W.: Combining Local Preferences with Multi-Criteria Decision Analysis and Linear Optimization to Develop Feasible Energy Concepts in Small Communities, Eur. J. Operat. Res., 268, 1092-1110, https://doi.org/10.1016/j.ejor.2018.01.036, 2018.
Medjroubi, W., Müller, U. P., Scharf, M., Marke, C., and Kleinhans, D.: Open Data in Power Grid Modelling: New Approaches Towards Transparent GridModels, Energ. Rep., 3, 14-21, https://doi.org/10.1016/j.egyr.2016, 2017.
Möller, D.-A. and Kalusche, W.: Planungs-und Bauökonomie: Wirtschaftslehre für Bauherren und Architekten, Walter de Gruyter, German Edition, ISBN-13 978-3486721256, 2015.
Mooney, P., Corcoran, P., and Winstanley, A. C.: Towards quality metrics for OpenStreetMap, in: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems-GIS '10, p. 514, ACM Press, San Jose, California, 2010.
Morgenthaler, S., Kuckshinrichs, W., and Witthaut, D.: Optimal System Layout and Locations for Fully Renewable High Temperature Co-Electrolysis, Appl. Energ., 260, 114218, https://doi.org/10.1016/j.apenergy.2019.114218, 2020.
Prettico, G., Flammini, M. G., Andreadou, N., Vitello, S., Fulli, G., and Masera, M: Distribution System Operators Observatory, available at: http://publications.jrc.ec.europa.eu/repository/ bitstream/JRC113926/jrc113926_kjna29615enn_newer.pdf (last access: 14 September 2020), 2018.
Pfenninger, S. and Pickering, B.: Calliope: a multi-scale energy systems modelling framework, Journal of Open Source Software, 3, 825, https://doi.org/10.21105/joss.00825, 2018.
Pickering, B. and Choudhary, R.: Mitigating risk in districtlevel energy investment decisions by scenario optimisation, 4th Building Simulation and Optimization Conference, Cambridge, Proceedings of BSO 2018, available at: http://www.ibpsa. org/proceedings/BSO2018/1B-1.pdf (last access: 11 November 2020), 2018.
Ratner, B.: The Correlation Coefficient: Its Values Range between _1, or Do They?, J. Target. Meas. Anal. Market., 17, 139-142, https://doi.org/10.1057/jt.2009.5, 2009.
Remmen, P., Lauster, M., Mans, M., Fuchs, M., Osterhage, T., and Müller, D.: TEASER: an open tool for urban energy modelling of building stocks, J. Build. Perform. Simu., 11, 84-98, https://doi.org/10.1080/19401493.2017.1283539, 2018.
Ringkjøb, H.-K., Haugan, P. M. and Solbrekke, I. M.: A review of modelling tools for energy and electricity systems with large shares of variable renewables, Renewable and Sustainable Energy Reviews, 96, 440-459, https://doi.org/10.1016/j.rser.2018.08.002, 2018.
Schiefelbein, J., Rudnick, J., Scholl, A., Remmen, P., Fuchs, M., and Müller, D.: Automated urban energy system modeling and thermal building simulation based on Open-StreetMap data sets, Build. Environ., 149, 630-639, https://doi.org/10.1016/j.buildenv.2018.12.025, 2019.
Schröder, F., Altendorf, L., Greller, M., and Boegelein, T.: Universelle Energiekennzahlen für Deutschland: Teil 4: Spezifischer Heizenergieverbrauch kleiner Wohnhäuser und Verbrauchshochrechnung für den Gesamtwohnungsbestand, Bauphysik, 33, 243-253, https://doi.org/10.1002/bapi.201110026, 2011.
Valdes, J., Wuth, J., Zink, R., Schröck, S., and Schmidbauer, M.: Extracting Relevant Points of Interest from Open Street Map to Support E-Mobility Infrastructure Models, Bavar. J. Appl. Sci., 4, 323-341, https://doi.org/10.25929/bjas.v4i1.51, 2018.
von Appen, J., Haack, J., and Martin, B.: Erzeugungzeitlich-hochaufgeloester-Stromlastprofile-fuer-verschiedene-Haushaltstypen, in: IEEE Power and Energy Student Summit, 22-24 January 2014, Stuttgart, Germany, available at: https://www.researchgate.net/profile/Jan_Von_Appen2/ (last access: 18 April 2020), 2014.
Witzmann, R.: Verteilnetzstudie Bayern 2013, München, available at: https://www.energie-innovativ.de/fileadmin/user_ upload/energie_innovativ/Dokumente/Energie-Rohstoffe/ Verteilnetzstudie_Bayern_02092013.pdf (last access: 28 May 2020), 2013.
Zapf, M.: Stromspeicher Und Power-to-Gas Im Deutschen Energiesystem-Rahmenbedingungen, Bedarf Und Einsatzmöglichkeiten, in: Systems, Storage and Harvesting, Springer Vieweg, Wiesbaden, 2017.
Zhou, Q., Jia, X., and Lin, H.: An approach for establishing correspondence between OpenStreetMap and reference datasets for land use and land cover mapping, T. GIS, 23, 1420-1443, https://doi.org/10.1111/tgis.12581, 2019.