energy cell simulation; energy storage; energy systems modeling; Power-to-Methane; sector coupling; sustainable energy; Bavaria; Case-studies; Cell simulation; Energy cell simulation; Energy cells; Energy-system models; Large amounts; Power; Power-to-methane; Sector coupling; Renewable Energy, Sustainability and the Environment; Fuel Technology; Energy Engineering and Power Technology; Energy (miscellaneous); Control and Optimization; Electrical and Electronic Engineering; Engineering (miscellaneous)
Abstract :
[en] In this study, the possibility of sector coupling with biological Power-to-Methane to support and stabilize the energy transition of the three major sectors of electricity, heat, and gas was addressed. For this purpose, the energy cell simulation methodology and the Calliope tool were utilized for energy system optimization. This combination provides detailed insights into the existing dependencies of consumers and fossil and renewable energy suppliers on a local scale. In this context, Power-to-Methane represents an efficient technology for quickly and effectively exploiting unused electricity potential for various sectors and consumers. It was found that, even in regions with low wind levels, this surplus electricity potential already exists and depends on various influencing factors in very different ways. The solar influence on these potentials was considered in connection with gas-fired cogeneration plants for district heating. It was found that the current heat demand for district heating produces a large amount of electricity and can generate surplus electricity in the winter. However, in the summer, large amounts of usable waste heat are dissipated into the environment, owing to the low consumption of district heat. This problem in the heat sector could be reduced by the expansion of photovoltaics, but this would require further expansion of storage or conversion systems in the electricity sector. This demonstrates that the consideration of several sectors is necessary to reflect the complexity of the sector coupling with Power-to-Methane properly.
Disciplines :
Energy
Author, co-author :
BAUER, Robert ; University of Luxembourg ; Technology Center Energy, Deggendorf Institute of Technology, European Campus Rottal-Inn, Deggendorf, Germany
Schopf, Dominik; Technology Center Energy, Deggendorf Institute of Technology, European Campus Rottal-Inn, Deggendorf, Germany
Klaus, Grégoire; Institute for Applied Informatics, Deggendorf Institute of Technology, Deggendorf, Germany
Brotsack, Raimund; Technology Center Energy, Deggendorf Institute of Technology, European Campus Rottal-Inn, Deggendorf, Germany
Valdes, Javier ; Institute for Applied Informatics, Deggendorf Institute of Technology, Deggendorf, Germany
External co-authors :
yes
Language :
English
Title :
Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria
Acknowledgments: We would like to thank the German Federal Ministry of Education and Research for their funding support.Funding: This research was supported by BMBF FHProfUnt-2016 (grant no. FKZ 13FH245PX6).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Hornberg, C.; Niekisch, M.; Calliess, C.; Kemfert, C.; Lucht, W.; Messari-Becker, L.; Rotter, V.S. Using the CO2 Budget to Meet the Paris Climate Targets; SRU: Berlin, Germany, 2020. Available online: https://www.umweltrat.de/SharedDocs/Downloads/EN/01_Environmental_Reports/2020_08_environmental_report_chapter_02.pdf?__blob=publicationFile&v=5 (accessed on 23 June 2021).
Bundesregierung. Klimaschutzgesetz: Klimaneutralität bis 2045, Bundesregierung. 2021. Available online: https://www. bundesregierung.de/breg-de/themen/klimaschutz/klimaschutzgesetz-2021-1913672 (accessed on 23 June 2021).
DVGW. Zwei-Energieträger-Welt; Deutscher Verein des Gas und Wasserfaches e.V.: Bonn, Germany, 2019; p. 7.
Thema, M.; Bauer, F.; Sterner, M. Power-to-Gas: Electrolysis and methanation status review. Renew. Sustain. Energy Rev. 2019, 112, 775–787. [CrossRef]
Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016, 85, 1371–1390. [CrossRef]
Graf, F.; Krajete, A.; Schmack, U. Abschlussbericht: Techno-Ökonomische Studie zur Biologischen Methanisierung bei Power-to-Gas-Konzepten; Engler-Bunte-Institut des Karlsruher Instituts für Technolgie KIT: Karlsruhe, Germany, 2014.
Morgenthaler, S.; Ball, C.; Koj, J.C.; Kuckshinrichs, W.; Witthaut, D. Site-dependent levelized cost assessment for fully renewable Power-to-Methane systems. Energy Convers. Manag. 2020, 223, 113150. [CrossRef]
Thema, M.; Weidlich, T.; Hörl, M.; Bellack, A.; Mörs, F.; Hackl, F.; Kohlmayer, M.; Gleich, J.; Stabenau, C.; Trabold, T.; et al. Biological CO2-Methanation: An Approach to Standardization. Energies 2019, 12, 1670. [CrossRef]
Reihani, E.; Motalleb, M.; Ghorbani, R.; Saoud, L.S. Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration. Renew. Energy 2016, 86, 1372–1379. [CrossRef]
Shen, J.; Jiang, C.; Liu, Y.; Qian, J. A Microgrid Energy Management System with Demand Response for Providing Grid Peak Shaving. Electr. Power Components Syst. 2016, 44, 843–852. [CrossRef]
Kotilainen, K. Energy prosumers’ role in the sustainable energy system. In Affordable and Clean Energy; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–14. [CrossRef]
Heendeniya, C.B.; Sumper, A.; Eicker, U. The multi-energy system co-planning of nearly zero-energy districts—Status-quo and future research potential. Appl. Energy 2020, 267, 114953. [CrossRef]
Bundesnetzagentur. Bericht über die Mindesterzeugung 2019; Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: Bonn, Germany, 2019. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/Erzeugungskapazitaeten/Mindesterzeugung/BerichtMindesterzeugung_2019.pdf?__blob=publicationFile&v=3 (accessed on 23 June 2021).
Kriechbaum, L.; Scheiber, G.; Kienberger, T. Grid-based multi-energy systems—Modelling, assessment, open source modelling frameworks and challenges. Energy Sustain. Soc. 2018, 8, 35. [CrossRef]
Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems. Appl. Energy 2019, 251, 113360. [CrossRef]
Benz, T.; Dickert, J.; Erbert, M.; Erdmann, N. Der Zellulare Ansatz. Grundlage Einer Erfolgreichen, Regionenübergreifenden Energiewende; VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.: Frankfurt, Germany, 2015. Available online: https://docplayer.org/17827249-Der-zellulare-ansatz-grundlage-einer-erfolgreichen-regionenuebergreifenden-energiewende.html (ac-cessed on 28 June 2021).
Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. FlexiGIS: An open source GIS-based platform for the optimisation of flexibility options in urban energy systems. Energy Procedia 2018, 152, 941–946. [CrossRef]
Tröndle, T.; Lilliestam, J.; Marelli, S.; Pfenninger, S. Trade-Offs between Geographic scale, Cost, and Infrastructure Requirements for Fully Renewable Electricity in Europe. Joule 2020. Available online: https://github.com/calliope-project/euro-calliope/commit/e3a2f8c1edc84ccfede8e6fd8eef1b782476fd35 (accessed on 31 July 2020).
Hilbers, A.P.; Brayshaw, D.J.; Gandy, A. Importance subsampling for power system planning under multi-year demand and weather uncertainty. In Proceedings of the 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Liege, Belgium, 18–21 August 2020; pp. 1–6. [CrossRef]
Valdes, J.; Wöllmann, S.; Weber, A.; Klaus, G.; Sigl, C.; Prem, M.; Bauer, R.; Zink, R. A framework for regional smart energy planning using volunteered geographic information. Adv. Geosci. 2020, 54, 179–193. [CrossRef]
Pfenninger, S. Dealing with multiple decades of hourly wind and PV time series in energy models: A comparison of methods to reduce time resolution and the planning implications of inter-annual variability. Appl. Energy 2017, 197, 1–13. [CrossRef]
Valdes, J.; Macia, Y.M.; Dorner, W.; Camargo, L.R. Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications. Energy 2020, 215, 118962. [CrossRef]
Bundesministerium für Wirtschaft und Energie, Aktuelle Informationen: Erneuerbare Energien im Jahr 2020. Available online: https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Aktuelle-Informationen/aktuelle-informationen.html (accessed on 23 June 2021).
Kurmann, F. Elektrolyse als Wärmequelle. VDI Nachrichten 2021, 75, 22. [CrossRef]
Weiler, V.; Stave, J.; Eicker, U. Renewable Energy Generation Scenarios Using 3D Urban Modeling Tools—Methodology for Heat Pump and Co-Generation Systems with Case Study Application. Energies 2019, 12, 403. [CrossRef]
Bayerische Staatsregierung. Karten und Daten zur Energiewende; Energie-Atlas: Bayern, Germany, 2020. Available online: https://geoportal.bayern.de/energieatlas-karten/?wicket-crypt=ov0weLCjotU (accessed on 30 July 2020).
Pfenninger, S.; Keirstead, J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Appl. Energy 2015, 152, 83–93. [CrossRef]
Díaz, P.; Patt, A.; Van Vliet, O. Do We Need Gas as a Bridging Fuel? A Case Study of the Electricity System of Switzerland. Energies 2017, 10, 861. [CrossRef]
Pfenninger, S.; Pickering, B. Calliope: A multi-scale energy systems modelling framework. J. Open Source Softw. 2018, 3, 825. [CrossRef]
Luz, G.P.; Silva, R.A.E. Modeling Energy Communities with Collective Photovoltaic Self-Consumption: Synergies between a Small City and a Winery in Portugal. Energies 2021, 14, 323. [CrossRef]
BDEW, VKU, and GEODE. Abwicklung von Standardlastprofilen Gas; BDEW, VKU, GEODE: Berlin, Germany, 2021. Available online: https://www.bdew.de/media/documents/20210331_LF_SLP_Gas_KoV_XII_WahrfRi.pdf (accessed on 23 June 2021).
BDEW. Standardlastprofile Strom. Available online: https://www.bdew.de/energie/standardlastprofile-strom/(accessed on 27 June 2021).
Parra, D.; Zhang, X.; Bauer, C.; Patel, M.K. An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. Appl. Energy 2017, 193, 440–454. [CrossRef]
Schiebahn, S.; Grube, T.; Robinius, M.; Tietze, V.; Kumar, B.; Stolten, D. Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany. Int. J. Hydrogen Energy 2015, 40, 4285–4294. [CrossRef]
Laha, P.; Chakraborty, B. Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach. Renew. Energy 2021, 179, 233–247. [CrossRef]
Calliope: A Multi-Scale Energy Systems Modeling Framework. Available online: https://calliope.readthedocs.io/en/v0.6.6-post1/index.html (accessed on 16 June 2021).
Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [CrossRef]
Pfenninger, S.; Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [CrossRef]
Padgham, M.; Rudis, B.; Lovelace, R.; Salmon, M. Osmdata: Import “OpenStreetMap” Data as Simple Features or Spatial Objects. 2020. Available online: https://CRAN.R-project.org/package=osmdata (accessed on 2 March 2020).
Bundesnetzagentur. Veröffentlichung von EEG-Registerdaten. Available online: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/EEG_ Registerdaten/EEG_Registerdaten_node.html (accessed on 5 July 2020).
C.A.R.M.E.N. e.V. Marktübersicht Batteriespeicher 2020, Centrales Agrar-Rohstoff Marketing-und Energie-Netzwerk, Straub-ing, Erneuerbare Energien 1. 2020. Available online: https://www.carmen-ev.de/files/Sonne_Wind_und_Co/Speicher/Marktuebersicht-Batteriespeicher_2020.pdf (accessed on 1 June 2020).
PEM Electrolysers and Stacks: H-TEC SYSTEMS Products. Available online: https://www.h-tec.com/en/products/(accessed on 20 March 2022).
Friedl, D.M.; Meier, B.; Ruoss, F.; Schmidlin, L. Thermodynamik von power-to-gas. In Hochschule für Technik, Rapperswil; Institut für Energietechnik: Amberg, Germany, 2017; p. 67.
Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. Modelling urban energy requirements using open source data and models. Appl. Energy 2018, 231, 1100–1108. [CrossRef]
Alhamwi, A.; Medjroubi, W.; Vogt, T.; Agert, C. OpenStreetMap data in modelling the urban energy infrastructure: A first assessment and analysis. Energy Procedia 2017, 142, 1968–1976. [CrossRef]
Schellong, W. Analyse und Optimierung von Energieverbundsystemen; Springer: Berlin/Heidelberg, Germany, 2016. [CrossRef]
Schröder, R.N.F.; Altendorf, L.; Greller, M.; Boegelein, T. Universelle Energiekennzahlen für Deutschland: Teil 4: Spezifischer Heizenergieverbrauch kleiner Wohnhäuser und Verbrauchs—Hochrechnung für den Gesamtwohnungsbestand. Bauphysik 2011, 33, 243–253. [CrossRef]
BDEW, VKU, and GEODE. Evaluierungsbericht der Verteilernetzbetreiber zu der Prognosegüte der Standardlastprofile Gas; BDEW, VKU, GEODE: Berlin, Germany, 2021. Available online: https://www.bdew.de/media/documents/2021-03-31_SLP-Evaluierungsbericht.pdf (accessed on 23 June 2021).
Ruhnau, O.; Hirth, L.; Praktiknjo, A. Time series of heat demand and heat pump efficiency for energy system modeling. Sci. Data 2019, 6, 189. [CrossRef]
Schüler, N.; Mastrucci, A.; Bertrand, A.; Page, J.; Marechal, F. Heat Demand Estimation for Different Building Types at Regional Scale Considering Building Parameters and Urban Topography. Energy Procedia 2015, 78, 3403–3409. [CrossRef]
Bundesministerium für Wirtschaft und Energie. So Heizen die Deutschen. 2019. Available online: https://www.bmwi-energiewende.de/EWD/Redaktion/Newsletter/2019/10/Meldung/direkt-erfasst_infografik.html (accessed on 23 June 2021).
BDEW. Energiemarkt Deutschland 2020; Wirtschafts und Verlagsgesellschaft Gas und Wasser mbH: Bonn, Germany, 2020; p. 52.
Bundesamt für Justiz, § 8 EEG 2021—Einzelnorm. 2014, p. 154. Available online: https://www.gesetze-im-internet.de/eeg_2014/__8.html (accessed on 17 June 2021).
Camargo, L.R.; Valdes, J.; Macia, Y.M.; Dorner, W. Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile. Appl. Energy 2019, 250, 1548–1558. [CrossRef]
Mooney, P.; Corcoran, P.; Winstanley, A.C. Towards quality metrics for OpenStreetMap. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems—GIS ’10, San Jose, CA, USA, 2–5 November 2010; p. 514. [CrossRef]
Pach, D. Seminar: MobileGIS OpenStreetMap Datenqualität und Quantiät. Uni Augsburg. 2012. Available online: https://www. informatik.uni-augsburg.de/lehrstuehle/dbis/db/lectures/ss11/mobileGIS/themen/Thema12_Ausarbeitung_Pach.pdf (ac-cessed on 25 August 2020).
Von Appen, J.; Haack, J.; Braun, M. Erzeugung zeitlich hochaufgelöster Stromlastprofile für Verschiedene Haushaltstypen, Presented at the IEEE Power and Energy Student Summit (PESS). 2014. Available online: https://www.researchgate.net/publication/273775902_Erzeugung_zeitlich_hochaufgeloster_Stromlastprofile_fur_verschiedene_Haushaltstypen (accessed on 28 June 2021).
Figgener, J.; Stenzel, P.; Kairies, K.-P.; Linßen, J.; Haberschusz, D.; Wessels, O.; Angenendt, G.; Robinius, M.; Stolten, D.; Sauer, D.U. The development of stationary battery storage systems in Germany—A market review. J. Energy Storage 2020, 29, 101153. [CrossRef]
Bundesamt für Justiz, § 109 GEG—Einzelnorm. 2020, p. 87. Available online: https://www.gesetze-im-internet.de/geg/__109. html (accessed on 23 June 2021).
Bründlinger, T.; König, J.; Frank, O.; Gründig, D.; Jugel, C.; Kraft, P. Integrierte Energiewende, Dena Deutsche Energie-Agentur GmbH, Berlin, Leitstudie. 2018. Available online: https://www.dena.de/themen-projekte/projekte/energiesysteme/dena-leitstudie-integrierte-energiewende/(accessed on 23 June 2021).
DANUP-2-GAS. Interreg Danube. 2020. Available online: http://www.interreg-danube.eu/approved-projects/danup-2-gas (accessed on 28 June 2021).
Pfennig, M.; Bonin, M.; Gerhardt, N. Ptx-Atlas: Weltweite Potenziale für Die Erzeugung von Grünem Wasserstoff und Klima-neutralen Synthetischen Kraft—Und Brennstoffen; Fraunhofer IEEE Institute für Energiewirtschaft und Energietechnik: Kassel, Germany, 2021. Available online: https://www.iee.fraunhofer.de/content/dam/iee/energiesystemtechnik/de/Dokumente/Veroeffentlichungen/FraunhoferIEE-PtX-Atlas_Hintergrundpapier_final.pdf (accessed on 28 June 2021).