[en] NLRP3 inflammasome activation contributes to several pathogenic conditions, including lipopolysaccharide (LPS)-induced sickness behavior characterized by reduced mobility and depressive behaviors. Dimethyl fumarate (DMF) is an immunomodulatory and anti-oxidative molecule commonly used for the symptomatic treatment of multiple sclerosis and psoriasis. In this study, we investigated the potential use of DMF against microglial NLRP3 inflammasome activation both in vitro and in vivo. For in vitro studies, LPS- and ATP-stimulated N9 microglial cells were used to induce NLRP3 inflammasome activation. DMF's effects on inflammasome markers, pyroptotic cell death, ROS formation, and Nrf2/NF-κB pathways were assessed. For in vivo studies, 12-14 weeks-old male BALB/c mice were treated with LPS, DMF + LPS and ML385 + DMF + LPS. Behavioral tests including open field, forced swim test, and tail suspension test were carried out to see changes in lipopolysaccharide-induced sickness behavior. Furthermore, NLRP3 and Caspase-1 expression in isolated microglia were determined by immunostaining. Here we demonstrated that DMF ameliorated LPS and ATP-induced NLRP3 inflammasome activation by reducing IL-1β, IL-18, caspase-1, and NLRP3 levels, reactive oxygen species formation and damage, and inhibiting pyroptotic cell death in N9 murine microglia via Nrf2/NF-κB pathways. DMF also improved LPS-induced sickness behavior in male mice and decreased caspase-1/NLRP3 levels via Nrf2 activation. Additionally, we showed that DMF pretreatment decreased miR-146a and miR-155 both in vivo and in vitro. Our results proved the effectiveness of DMF on the amelioration of microglial NLRP3 inflammasome activation. We anticipate that this study will provide the foundation consideration for further studies aiming to suppress NLRP3 inflammasome activation associated with in many diseases and a better understanding of its underlying mechanisms.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
TASTAN, Bora ✱; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Neuroinflammation Group ; Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey ; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
Arioz, Burak I ✱; Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey ; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
Tufekci, Kemal Ugur; Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey ; Department of Healthcare Services, Vocational School of Health Services, Izmir Democracy University, Izmir, Turkey
Tarakcioglu, Emre; Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey ; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
Gonul, Ceren Perihan; Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey ; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
Genc, Kursad; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
Genc, Sermin; Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey ; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Dimethyl Fumarate Alleviates NLRP3 Inflammasome Activation in Microglia and Sickness Behavior in LPS-Challenged Mice.
Türkiye Bilimsel ve Teknolojik Araştirma Kurumu Dokuz Eylül Üniversitesi
Funding text :
The study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK, Project No: 215Z473) and Dokuz Eylul University Department of Scientific Research Projects (DEU-BAP, Project No: 2017.KB.SAG.039).
Shabab T Khanabdali R Moghadamtousi SZ Kadir HA Mohan G. Neuroinflammation Pathways: A General Review. Int J Neurosci (2017) 127(7):624–33. doi: 10.1080/00207454.2016.1212854
Streit WJ Mrak RE Griffin WS. Microglia and Neuroinflammation: A Pathological Perspective. J Neuroinflamm (2004) 1(1):14. doi: 10.1186/1742-2094-1-14
Basu Mallik S Mudgal J Nampoothiri M Hall S Dukie SA Grant G et al. Caffeic Acid Attenuates Lipopolysaccharide-Induced Sickness Behaviour and Neuroinflammation in Mice. Neurosci Lett (2016) 632:218–23. doi: 10.1016/j.neulet.2016.08.044
Aubert A Goodall G Dantzer R Gheusi G. Differential Effects of Lipopolysaccharide on Pup Retrieving and Nest Building in Lactating Mice. Brain Behav Immun (1997) 11(2):107–18. doi: 10.1006/brbi.1997.0485
Shattuck EC Muehlenbein MP. Human Sickness Behavior: Ultimate and Proximate Explanations. Am J Phys Anthropol (2015) 157(1):1–18. doi: 10.1002/ajpa.22698
Zhao Z Wang Y Zhou R Li Y Gao Y Tu D et al. A Novel Role of NLRP3-Generated IL-1beta in the Acute-Chronic Transition of Peripheral Lipopolysaccharide-Elicited Neuroinflammation: Implications for Sepsis-Associated Neurodegeneration. J Neuroinflamm (2020) 17(1):64. doi: 10.1186/s12974-020-1728-5
Schroder K Tschopp J. The Inflammasomes. Cell (2010) 140(6):821–32. doi: 10.1016/j.cell.2010.01.040
Lupfer C Kanneganti TD. The Expanding Role of NLRs in Antiviral Immunity. Immunol Rev (2013) 255(1):13–24. doi: 10.1111/imr.12089
Zhou K Shi L Wang Y Chen S Zhang J. Recent Advances of the NLRP3 Inflammasome in Central Nervous System Disorders. J Immunol Res (2016) 2016:9238290. doi: 10.1155/2016/9238290
Olcum M Tastan B Ercan I Eltutan IB Genc S. Inhibitory Effects of Phytochemicals on NLRP3 Inflammasome Activation: A Review. Phytomedicine (2020) 75:153238. doi: 10.1016/j.phymed.2020.153238
Mangan MSJ Olhava EJ Roush WR Seidel HM Glick GD Latz E. Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nat Rev Drug Discov (2018) 17(8):588–606. doi: 10.1038/nrd.2018.97
Bauernfeind FG Horvath G Stutz A Alnemri ES MacDonald K Speert D et al. Cutting Edge: NF-kappaB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. J Immunol (2009) 183(2):787–91. doi: 10.4049/jimmunol.0901363
Herman FJ Pasinetti GM. Principles of Inflammasome Priming and Inhibition: Implications for Psychiatric Disorders. Brain Behav Immun (2018) 73:66–84. doi: 10.1016/j.bbi.2018.06.010
Lamkanfi M Kanneganti TD. Nlrp3: An Immune Sensor of Cellular Stress and Infection. Int J Biochem Cell Biol (2010) 42(6):792–5. doi: 10.1016/j.biocel.2010.01.008
Prochnicki T Latz E. Inflammasomes on the Crossroads of Innate Immune Recognition and Metabolic Control. Cell Metab (2017) 26(1):71–93. doi: 10.1016/j.cmet.2017.06.018
Yang Y Wang H Kouadir M Song H Shi F. Recent Advances in the Mechanisms of NLRP3 Inflammasome Activation and Its Inhibitors. Cell Death Dis (2019) 10(2):128. doi: 10.1038/s41419-019-1413-8
Lu F Lan Z Xin Z He C Guo Z Xia X et al. Emerging Insights Into Molecular Mechanisms Underlying Pyroptosis and Functions of Inflammasomes in Diseases. J Cell Physiol (2020) 235(4):3207–21. doi: 10.1002/jcp.29268
Blair HA. Dimethyl Fumarate: A Review in Relapsing-Remitting Ms. Drugs (2019) 79(18):1965–76. doi: 10.1007/s40265-019-01229-3
Fox RJ Miller DH Phillips JT Hutchinson M Havrdova E Kita M et al. Placebo-Controlled Phase 3 Study of Oral BG-12 or Glatiramer in Multiple Sclerosis. N Engl J Med (2012) 367(12):1087–97. doi: 10.1056/NEJMoa1206328
Gold R Kappos L Arnold DL Bar-Or A Giovannoni G Selmaj K et al. Placebo-Controlled Phase 3 Study of Oral BG-12 for Relapsing Multiple Sclerosis. N Engl J Med (2012) 367(12):1098–107. doi: 10.1056/NEJMoa1114287
Diebold M Sievers C Bantug G Sanderson N Kappos L Kuhle J et al. Dimethyl Fumarate Influences Innate and Adaptive Immunity in Multiple Sclerosis. J Autoimmun (2018) 86:39–50. doi: 10.1016/j.jaut.2017.09.009
Paraiso HC Kuo PC Curfman ET Moon HJ Sweazey RD Yen JH et al. Dimethyl Fumarate Attenuates Reactive Microglia and Long-Term Memory Deficits Following Systemic Immune Challenge. J Neuroinflamm (2018) 15(1):100. doi: 10.1186/s12974-018-1125-5
Wang Q Chuikov S Taitano S Wu Q Rastogi A Tuck SJ et al. Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons From Oxidative Damage Through Nrf2-ERK1/2 MAPK Pathway. Int J Mol Sci (2015) 16(6):13885–907. doi: 10.3390/ijms160613885
Lastra D Fernandez-Gines R Manda G Cuadrado A. Perspectives on the Clinical Development of NRF2-Targeting Drugs. Handb Exp Pharmacol (2020) 264:93–141. doi: 10.1007/164_2020_381
Cuadrado A Manda G Hassan A Alcaraz MJ Barbas C Daiber A et al. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol Rev (2018) 70(2):348–83. doi: 10.1124/pr.117.014753
Afonina IS Zhong Z Karin M Beyaert R. Limiting Inflammation-the Negative Regulation of NF-kappaB and the NLRP3 Inflammasome. Nat Immunol (2017) 18(8):861–9. doi: 10.1038/ni.3772
Miglio G Veglia E Fantozzi R. Fumaric Acid Esters Prevent the NLRP3 Inflammasome-Mediated and ATP-Triggered Pyroptosis of Differentiated THP-1 Cells. Int Immunopharmacol (2015) 28(1):215–9. doi: 10.1016/j.intimp.2015.06.011
Liu X Zhou W Zhang X Lu P Du Q Tao L et al. Dimethyl Fumarate Ameliorates Dextran Sulfate Sodium-Induced Murine Experimental Colitis by Activating Nrf2 and Suppressing NLRP3 Inflammasome Activation. Biochem Pharmacol (2016) 112:37–49. doi: 10.1016/j.bcp.2016.05.002
Righi M Mori L De Libero G Sironi M Biondi A Mantovani A et al. Monokine Production by Microglial Cell Clones. Eur J Immunol (1989) 19(8):1443–8. doi: 10.1002/eji.1830190815
Arioz BI Tastan B Tarakcioglu E Tufekci KU Olcum M Ersoy N et al. Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway. Front Immunol (2019) 10:1511. doi: 10.3389/fimmu.2019.01511
Schindelin J Arganda-Carreras I Frise E Kaynig V Longair M Pietzsch T et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat Methods (2012) 9(7):676–82. doi: 10.1038/nmeth.2019
Gandhi R Hayley S Gibb J Merali Z Anisman H. Influence of Poly I:C on Sickness Behaviors, Plasma Cytokines, Corticosterone and Central Monoamine Activity: Moderation by Social Stressors. Brain Behav Immun (2007) 21(4):477–89. doi: 10.1016/j.bbi.2006.12.005
Zoller T Attaai A Potru PS Russ T Spittau B. Aged Mouse Cortical Microglia Display an Activation Profile Suggesting Immunotolerogenic Functions. Int J Mol Sci (2018) 19(3):706. doi: 10.3390/ijms19030706
Place DE Kanneganti TD. Recent Advances in Inflammasome Biology. Curr Opin Immunol (2017) 50:32–8. doi: 10.1016/j.coi.2017.10.011
Mazuco TRR Biondi TF Silva EP Bernardi MM Kirsten TB. LPS-Induced Sickness Behavior is Not Affected by Selenium But Is Switched Off by Psychogenic Stress in Rats. Vet Res Commun (2019) 43(4):239–47. doi: 10.1007/s11259-019-09766-8
Dantzer R. Cytokine, Sickness Behavior, and Depression. Immunol Allergy Clin North Am (2009) 29(2):247–64. doi: 10.1016/j.iac.2009.02.002
Stansley B Post J Hensley K. A Comparative Review of Cell Culture Systems for the Study of Microglial Biology in Alzheimer’s Disease. J Neuroinflamm (2012) 9:115. doi: 10.1186/1742-2094-9-115
Peng H Li H Sheehy A Cullen P Allaire N Scannevin RH. Dimethyl Fumarate Alters Microglia Phenotype and Protects Neurons Against Proinflammatory Toxic Microenvironments. J Neuroimmunol (2016) 299:35–44. doi: 10.1016/j.jneuroim.2016.08.006
Campolo M Casili G Biundo F Crupi R Cordaro M Cuzzocrea S et al. The Neuroprotective Effect of Dimethyl Fumarate in an MPTP-Mouse Model of Parkinson’s Disease: Involvement of Reactive Oxygen Species/Nuclear Factor-Kappab/Nuclear Transcription Factor Related to NF-E2. Antioxid Redox Signal (2017) 27(8):453–71. doi: 10.1089/ars.2016.6800
Wilms H Sievers J Rickert U Rostami-Yazdi M Mrowietz U Lucius R. Dimethylfumarate Inhibits Microglial and Astrocytic Inflammation by Suppressing the Synthesis of Nitric Oxide, IL-1beta, TNF-Alpha and IL-6 in an in-Vitro Model of Brain Inflammation. J Neuroinflamm (2010) 7:30. doi: 10.1186/1742-2094-7-30
Kortam MA Ali BM Fathy N. The Deleterious Effect of Stress-Induced Depression on Rat Liver: Protective Role of Resveratrol and Dimethyl Fumarate via Inhibiting the MAPK/ERK/JNK Pathway. J Biochem Mol Toxicol (2021) 35(1):e22627. doi: 10.1002/jbt.22627
Amin FM Abdelaziz RR Hamed MF Nader MA Shehatou GSG. Dimethyl Fumarate Ameliorates Diabetes-Associated Vascular Complications Through ROS-TXNIP-NLRP3 Inflammasome Pathway. Life Sci (2020) 256:117887. doi: 10.1016/j.lfs.2020.117887
Zhou R Yazdi AS Menu P Tschopp J. A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature (2011) 469(7329):221–5. doi: 10.1038/nature09663
Sarkar S Malovic E Harishchandra DS Ghaisas S Panicker N Charli A et al. Mitochondrial Impairment in Microglia Amplifies NLRP3 Inflammasome Proinflammatory Signaling in Cell Culture and Animal Models of Parkinson’s Disease. NPJ Parkinsons Dis (2017) 3:30. doi: 10.1038/s41531-017-0032-2
Wang HM Zhang T Huang JK Xiang JY Chen JJ Fu JL et al. Edaravone Attenuates the Proinflammatory Response in Amyloid-Beta-Treated Microglia by Inhibiting NLRP3 Inflammasome-Mediated IL-1beta Secretion. Cell Physiol Biochem (2017) 43(3):1113–25. doi: 10.1159/000481753
Liu Q Zhang D Hu D Zhou X Zhou Y. The Role of Mitochondria in NLRP3 Inflammasome Activation. Mol Immunol (2018) 103:115–24. doi: 10.1016/j.molimm.2018.09.010
Scuderi SA Ardizzone A Paterniti I Esposito E Campolo M. Antioxidant and Anti-Inflammatory Effect of Nrf2 Inducer Dimethyl Fumarate in Neurodegenerative Diseases. Antioxidants (Basel) (2020) 9(7):630. doi: 10.3390/antiox9070630
Eren E Tufekci KU Isci KB Tastan B Genc K Genc S. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype Through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells. Front Immunol (2018) 9:36. doi: 10.3389/fimmu.2018.00036
Yamamoto M Kensler TW Motohashi H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev (2018) 98(3):1169–203. doi: 10.1152/physrev.00023.2017
Kourakis S Timpani CA de Haan JB Gueven N Fischer D Rybalka E. Dimethyl Fumarate and Its Esters: A Drug With Broad Clinical Utility? Pharmaceuticals (Basel) (2020) 13(10):306. doi: 10.3390/ph13100306
Morgan MJ Liu ZG. Crosstalk of Reactive Oxygen Species and NF-kappaB Signaling. Cell Res (2011) 21(1):103–15. doi: 10.1038/cr.2010.178
Wardyn JD Ponsford AH Sanderson CM. Dissecting Molecular Cross-Talk Between Nrf2 and NF-kappaB Response Pathways. Biochem Soc Trans (2015) 43(4):621–6. doi: 10.1042/BST20150014
Hui CW Vecchiarelli HA Gervais E Luo X Michaud F Scheefhals L et al. Sex Differences of Microglia and Synapses in the Hippocampal Dentate Gyrus of Adult Mouse Offspring Exposed to Maternal Immune Activation. Front Cell Neurosci (2020) 14:558181. doi: 10.3389/fncel.2020.558181
Liu LL Li JM Su WJ Wang B Jiang CL. Sex Differences in Depressive-Like Behaviour may Relate to Imbalance of Microglia Activation in the Hippocampus. Brain Behav Immun (2019) 81:188–97. doi: 10.1016/j.bbi.2019.06.012
Guneykaya D Ivanov A Hernandez DP Haage V Wojtas B Meyer N et al. Transcriptional and Translational Differences of Microglia From Male and Female Brains. Cell Rep (2018) 24(10):2773–83.e6. doi: 10.1016/j.celrep.2018.08.001
Jha MK Jo M Kim JH Suk K. Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist (2019) 25(3):227–40. doi: 10.1177/1073858418783959
Freeman L Guo H David CN Brickey WJ Jha S Ting JP. NLR Members NLRC4 and NLRP3 Mediate Sterile Inflammasome Activation in Microglia and Astrocytes. J Exp Med (2017) 214(5):1351–70. doi: 10.1084/jem.20150237