[en] In this paper, a new receiver structure that is intended to detect the signals from multiple adjacent satellites in the presence of other interfering satellites is proposed. We tackle the worst case interference conditions, i.e., it is assumed that uncoded signals that fully overlap in frequency arrive at a multiple-element small-size parabolic antenna in a spatially correlated noise environment. The proposed successive interference cancellation (SIC) receiver, denoted by SIC Hy/ML, employs hybrid beamforming and disjoint maximum likelihood (ML) detection. Depending on the individual signals spatial position, the proposed SIC Hy/ML scheme takes advantage of two types of beamformers: a maximum ratio combining (MRC) beamformer and a compromised array response (CAR) beamformer. The performance of the proposed receiver is compared to an SIC receiver that uses only MRC beamforming scheme with ML detection for all signals, a joint ML detector, and a minimum mean square error detector. It is found that SIC Hy/ML outperforms the other schemes by a large margin.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
ABU SHABAN, Zohair ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Mehrpouyan, Hani; California State University, Bakersfield > ECE&CS
Grotz, Joel; SES, S.A.
OTTERSTEN, Björn ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Overloaded Satellite Receiver using SIC with Hybrid Beamforming and ML detection
Date de publication/diffusion :
juin 2013
Nom de la manifestation :
14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Darmstadt, Allemagne
Date de la manifestation :
June 2013
Manifestation à portée :
International
Titre de l'ouvrage principal :
14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC)