[en] Facial recognition has been one of the most intriguing and exciting research topics over the last few years. It involves multiple face-based algorithms such as facial detection, facial alignment, facial representation, and facial recognition. However, all of these algorithms are derived from large deep-learning architectures, leading to limitations in development, scalability, accuracy, and deployment for public use with mere CPU servers. Also, large data sets that contain hundreds of thousands of records are often required for training purposes. In this paper, we propose a complete pipeline for an effective face-recognition application that requires only a small dataset of Vietnamese celebrities and a CPU for training, solving the problem of data leakage, and the need for GPU devices.The pipeline is based on the combination of a conversion algorithm from face vectors to string tokens and the indexing & retrieval process by Elasticsearch, thereby tackling the problem of online learning in facial recognition. Compared with other popular algorithms on the same data set, our proposed pipeline not only outperforms the counterpart in terms of accuracy but also delivers faster inference, which is essential to real-time applications.
Disciplines :
Computer science
Author, co-author :
NGUYEN, van Dat ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
NGUYEN, Trung Son; Sun Asterisk VN
PHAM, Thi Hong Anh; Sun Asterisk VN
PHAM, Van Toan; Sun Asterisk VN
HOANG, Thu Thao; Sun Asterisk VN
TA, Minh Thanh; Le Quy Don Technical University
External co-authors :
yes
Language :
English
Title :
HYBRID END-TO-END APPROACH INTEGRATING ONLINE LEARNING WITH FACE-IDENTIFICATION SYSTEM
Publication date :
10 March 2023
Journal title :
Computer Science
ISSN :
1508-2806
eISSN :
2300-7036
Publisher :
AGH University of Science and Technology Press, Poland
[1] Almabdy S., Elrefaei L.: Deep Convolutional Neural Network-Based Approaches for Face Recognition, Applied Sciences, vol. 9, p. 4397, 2019. doi: 10.3390/ app9204397.
[2] Amos B., Ludwiczuk B., Satyanarayanan M.: OpenFace: A general-purpose face recognition library with mobile applications, Tech. rep., CMU-CS-16-118, CMU School of Computer Science, 2016.
[3] Bradski G.: The OpenCV Library, Dr Dobb's Journal of Software Tools, 2000.
[4] Cao Q., Shen L., Xie W., Parkhi O.M., Zisserman A.: VGGFace2: A dataset for recognising faces across pose and age, 2018.
[5] Chowdhry D.A., Hussain A., Ur Rehman M.Z., Ahmad F., Ahmad A., Pervaiz M.: Smart security system for sensitive area using face recognition. In: 2013 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (CSUDET), pp. 11-14, 2013.
[10] Contributors T.: Tensorflow Serving 6.8, 2019. https://github.com/tensorflow/serving.
[11] Dalal N., Triggs B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886-893, 2005.
[12] Deb D., Nain N., Jain A.K.: Longitudinal Study of Child Face Recognition, 2017.
[13] Deng J., Guo J., Xue N., Zafeiriou S.: ArcFace: Additive Angular Margin Loss for Deep Face Recognition, 2019.
[14] Deng J., Guo J., Zhou Y., Yu J., Kotsia I., Zafeiriou S.: RetinaFace: Single-stage Dense Face Localisation in the Wild, 2019.
[15] F.R.S. K.P.: LIII. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2(11), pp. 559-572, 1901. doi: 10.1080/14786440109462720.
[16] Girshick R., Donahue J., Darrell T., Malik J.: Rich feature hierarchies for accurate object detection and semantic segmentation, 2014.
[17] Goodfellow I., Bengio Y., Courville A.: Deep Learning, MIT Press, 2016. http: //www.deeplearningbook.org.
[18] He K., Zhang X., Ren S., Sun J.: Deep Residual Learning for Image Recognition, 2015.
[19] Hearst M.A., Dumais S.T., Osuna E., Platt J., Scholkopf B.: Support vector machines, IEEE Intelligent Systems and their Applications, vol. 13(4), pp. 18-28, 1998.
[20] Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., An-dreetto M., Adam H.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017.
[21] King D.E.: Dlib-Ml: A Machine Learning Toolkit, J Mach Learn Res, vol. 10, p. 1755„1758, 2009.
[22] Komulainen J., Hadid A., Pietikainen M.: Context based face anti-spoofing. In: IEEE 6th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2013, pp. 1-8, 2013. doi: 10.1109/BTAS.2013.6712690.
[23] Learned-Miller G.B.H.E.: Labeled Faces in the Wild: Updates and New Reporting Procedures, Tech. Rep. UM-CS-2014-003, University of Massachusetts, Amherst, 2014.
[24] Li H., Lin Z., Shen X., Brandt J., Hua G.: A convolutional neural network cascade for face detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5325-5334, 2015.
[25] Lienhart R., Maydt J.: An extended set of Haar-like features for rapid object detection. In: Proceedings. International Conference on Image Processing, vol. 1, pp. I-I, 2002.
[26] Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.Y., Berg A.: SSD: Single Shot MultiBox Detector. In: Computer Vision - ECCV 2016, vol. 9905, pp. 21-37, 2016. doi: 10.1007/978-3-319-46448-0_2.
[27] Mu C., Zhao J., Yang G., Zhang J., Yan Z.: Towards Practical Visual Search Engine within Elasticsearch, 2019.
[28] Ng H.W., Winkler S.: A data-driven approach to cleaning large face datasets, 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 343347, 2015. doi: 10.1109/ICIP.2014.7025068.
[29] Owayjan M., Dergham A., Haber G., Fakih N., Hamoush A., Abdo E.: Face Recognition Security System. In: International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013), 2013.
[30] Parmar D., Mehta B.: Face Recognition Methods & Applications, International Journal of Computer Technology and Applications, vol. 4, pp. 84-86, 2014.
[31] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E.: Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol. 12, pp. 28252830, 2011.
[32] Rima S., Sima R., Ullah M., Hossain S.: Smart Security Surveillance using IoT. In: 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), pp. 659-663, 2018. doi: 10.1109/ICRITO.2018.8748703.
[33] Sahoo D., Pham Q., Lu J., Hoi S.C.H.: Online Deep Learning: Learning Deep Neural Networks on the Fly, 2017.
[34] Satish A., Devarajan N.: Preprocessing technique for face recognition applications under varying illumination conditions, Global Journal of Computer Science and Technology Graphics and Vision, vol. 12, pp. 13-18, 2012.
[35] Schroff F., Kalenichenko D., Philbin J.: FaceNet: A unified embedding for face recognition and clustering, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015. doi: 10.1109/cvpr.2015.7298682.
[36] Shi Y., Otto C., Jain A.K.: Face Clustering: Representation and Pairwise Constraints, IEEE Transactions on Information Forensics and Security, vol. 13(7), pp. 1626-1640, 2018. doi: 10.1109/tifs.2018.2796999.
[37] Taigman Y., Yang M., Ranzato M., Wolf L.: DeepFace: Closing the Gap to Human-Level Performance in Face Verification. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014. doi: 10.1109/CVPR.2014.220.
[38] Tang X., Du D.K., He Z., Liu J.: PyramidBox: A Context-assisted Single Shot Face Detector, 2018.
[39] Tolba A., El-Baz A., El-Harby A.: Face Recognition: A Literature Review, International Journal of Signal Processing, vol. 2, pp. 88-103, 2005.
[40] Van T.P., Nguyen T.M., Tran N.N., Nguyen H.V., Doan L.B., Dao H.Q., Minh T.T.: Interpreting the Latent Space of Generative Adversarial Networks using Supervised Learning. In: 2020 International Conference on Advanced Computing and Applications (ACOMP), pp. 49-54, 2020. doi: 10.1109/ ACOMP50827.2020.00015.
[41] Vikram K., Padmavathi S.: Facial parts detection using Viola Jones algorithm. In: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1-4, 2017.
[42] Viola P., Jones M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-511, 2001. doi: 10.1109/CVPR.2001.990517.
[43] Wang H., Wang Y., Zhou Z., Ji X., Gong D., Zhou J., Li Z., Liu W.: CosFace: Large Margin Cosine Loss for Deep Face Recognition, 2018.
[44] Wang M., Deng W.: Deep Face Recognition: A Survey, 2018.
[45] Wang Y., Yao Q.: Few-shot Learning: A Survey, CoRR, vol. abs/1904.050461904.05046, 2019. http://arxiv.org/abs/1904.05046. 1904.05046.
[46] Wold S., Esbensen K., Geladi P.: Principal component analysis, Chemometrics and Intelligent Laboratory Systems, vol. 2(1), pp. 37-52, 1987. doi: 10.1016/0169-7439(87)80084-9.
[47] Wright J., Yang A., Ganesh A., Sastry S., Yu L.: Robust Face Recognition via Sparse Representation, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, pp. 210 - 227, 2009. doi: 10.1109/TPAMI.2008.79.
[48] Yang H., Jia X., Loy C.C., Robinson P.: An Empirical Study of Recent Face Alignment Methods, 2015. doi: 10.13140/RG.2.1.4603.8484.
[49] Yang J., Luo L., Qian J., Tai Y., Zhang F., Xu Y.: Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39(1), pp. 156-171, 2017.
[50] Yi D., Lei Z., Liao S., Li S.Z.: Learning Face Representation from Scratch, 2014.
[51] Zhang K., Zhang Z., Li Z., Qiao Y.: Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks, IEEE Signal Processing Letters, vol. 23, 2016. doi: 10.1109/LSP.2016.2603342.