Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
SHARP Challenge 2023: Solving CAD History and pArameters Recovery from Point clouds and 3D scans. Overview, Datasets, Metrics, and Baselines.
MALLIS, Dimitrios; ALI, Sk Aziz; DUPONT, Elona et al.
2023In International Conference on Computer Vision Workshops
Peer reviewed
 

Documents


Texte intégral
SHARP2023_ICCVW23_Submission.pdf
Preprint Auteur (6.78 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
3D Computer Vision; PointCloud Processing; 3D Reverse Engineering
Résumé :
[en] Recent breakthroughs in geometric Deep Learning (DL) and the availability of large Computer-Aided Design (CAD) datasets have advanced the research on learning CAD modeling processes and relating them to real objects. In this context, 3D reverse engineering of CAD models from 3D scans is considered to be one of the most sought-after goals for the CAD industry. However, recent efforts assume multiple simplifications limiting the applications in real-world settings. The SHARP Challenge 2023 aims at pushing the research a step closer to the real-world scenario of CAD reverse engineering from 3D scans through dedicated datasets and tracks. In this paper, we define the proposed SHARP 2023 tracks, describe the provided datasets, and propose a set of baseline methods along with suitable evaluation metrics to assess the performance of the track solutions. All proposed datasets along with useful routines and the evaluation metrics are publicly available.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MALLIS, Dimitrios  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
ALI, Sk Aziz ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
DUPONT, Elona ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SnT) > CVI2
Cherenkova, Kseniya;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SnT) > CVI2 ; Artec 3D
KARADENIZ, Ahmet Serdar ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
KHAN, Mohammad Sadil ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Gleb, Gusev;  Artec 3D
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
SHARP Challenge 2023: Solving CAD History and pArameters Recovery from Point clouds and 3D scans. Overview, Datasets, Metrics, and Baselines.
Date de publication/diffusion :
03 octobre 2023
Nom de la manifestation :
International Conference on Computer Vision Workshops
Lieu de la manifestation :
Paris, France
Date de la manifestation :
from 02-10-2023 to 06-10-2023
Manifestation à portée :
International
Titre du périodique :
International Conference on Computer Vision Workshops
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet FnR :
FNR16849599 > Djamila Aouada > FREE-3D > Feature-based Reverse Engineering Of 3d Scans > 01/01/2022 > 31/12/2024 > 2021
Disponible sur ORBilu :
depuis le 09 octobre 2023

Statistiques


Nombre de vues
144 (dont 7 Unilu)
Nombre de téléchargements
106 (dont 0 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu