Propagation Characteristics of a Partially Coherent Gaussian Schell-model Array Vortex Beam in the Joint Turbulence Effect of a Jet Engine and Atmosphere
A29_Propagation Characteristics of a Partially Coherent GaussianSchell-model Array Vortex Beam in the Joint TurbulenceEffect of a Jet Engine and Atmosphere.pdf
[en] This work investigates the joint effects of jet engine exhaust-induced
turbulence and atmospheric turbulence on the propagation of a partially
coherent Gaussian Schell-model Array (GSMA) vortex beam. Using the
two-process propagation method, analytical formulae are derived for the
cross-spectral density, spectral density, degree of coherence, and beam width
of the considered beam. The results show that the considered beam takes
different shapes; when the spatial coherence is large, the spectral density of
the GSMA vortex beam takes an elliptical shape, whereas when the spatial
coherence is smaller, the spectral density remains a Gaussian shape. The
evolution profile of the degree of coherence weakens gradually when the
propagation distance, topological charge, and turbulence strength increase.
Moreover, the profile of the degree of coherence takes the Gaussian profile
when the propagation distance is longer or turbulence atmospheric is
stronger. Furthermore, the results reveal that the corresponding beam
spreads faster with a larger propagation distance, lower spatial coherence,
and high-strength turbulence. This study also concludes from the results that
the beam is affected more when its propagation is near the jet engine exhaust,
which means that this latter has a significant impact.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM - Signal Processing & Communications
Disciplines :
Electrical & electronics engineering
Author, co-author :
Nabil, Hassan; Hassan First University of Settat > Ecole Nationale des Sciences Appliquées
Balhamri, Adil; Hassan First University of Settat > École Nationale des Sciences Appliquées
Bayraktar, Mert ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Belafhal, Abdelmajid; Chouaïb Doukkali University
External co-authors :
yes
Language :
English
Title :
Propagation Characteristics of a Partially Coherent Gaussian Schell-model Array Vortex Beam in the Joint Turbulence Effect of a Jet Engine and Atmosphere
Alternative titles :
[en] Propagation Characteristics of a Partially Coherent Gaussian Schell-model Array Vortex Beam in the Joint Turbulence Effect of a Jet Engine and Atmosphere
L. C. Andrews, R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed., SPIE, Bellingham, WA 2005.
A. Belafhal, S. Hennani, L. Ez-zariy, A. Chafiq, M. Khouilid, Phys. Chem. News 2011, 62, 36.
L. Ez-Zariy, F. Boufalah, L. Dalil-Essakali, A. Belafhal, Optik 2016, 127, 11534.
F. Saad, E. M. El Halba, A. Belafhal, Opt. Quantum Electron. 2017, 49, 94.
F. Boufalah, L. Dalil-Essakali, L. Ez-Zariy, A. Belafhal, Opt. Quantum Electron. 2018, 50, 305.
M. Yaalou, E. M. El Halba, Z. Hricha, A. Belafhal, Opt. Quantum Electron. 2019, 51, 305.
Z. Hricha, M. Yaalou, A. Belafhal, Opt. Quantum Electron. 2020, 52, 201.
Z. Hricha, M. Lazrek, M. Yaalou, A. Belafhal, Opt. Quantum Electron. 2021, 53, 383.
M. Bayraktar, Photonic Netw. Commun. 2021, 41, 274.
Z. Hricha, M. Lazrek, M. E. Halba, A. Belafhal, Opt. Quantum Electron. 2022, 54, 719.
A. A. A. Ebrahim, M. A. Swillam, A. Belafhal, Opt. Quantum Electron. 2023, 55, 316.
F. Ye, J. Xie, S. Hong, J. Zhang, D. Deng, Results Phys. 2019, 13, 102249.
O. Korotkova, S. Sahin, E. Shchepakina, J. Opt. Soc. Am. A 2012, 29, 2159.
J. Cang, P. Xiu, X. Liu, Opt. Laser Technol. 2013, 54, 35.
S. Chib, L. Dalil-Essakali, A. Belafhal, Opt. Quantum Electron. 2020, 52, 484.
M. Bayraktar, Optik 2021, 245, 167741.
S. Chib, L. Dalil-Essakali, A. Belafhal, Opt. Quantum Electron. 2022, 54, 175.
S. Chib, L. Dalil-Essakali, A. Belafhal, Opt. Quantum Electron. 2022, 54, 468.
S. Chib, M. Bayraktar, A. Belafhal, Phys. Scr. 2022, 98, 015513.
C. Sun, X. Lv, B. Ma, J. Zhang, D. Deng, W. Hong, Opt. Express 2019, 27, A245.
Y. Cai, Y. Chen, F. Wang, J. Opt. Soc. Am. A 2014, 31, 2083.
F. Wang, X. Liu, Y. Cai, Prog. Electromagn. Res. 2015, 150, 123.
X. Ji, Z. Pu, Appl. Phys. B 2008, 93, 915.
P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, Z. Liu, Appl. Opt. 2009, 48, 5251.
Y. Mao, Z. Mei, J. Gu, Opt. Laser Technol. 2016, 86, 14.
Y. Mao, Z. Mei, J. Gu, Y. Zhao, Appl. Phys. B 2017, 123, 111.
D. Liu, H. Zhong, G. Wang, H. Yin, Y. Wang, Appl. Phys. B 2019, 125, 447.
D. Liu, H. Zhong, G. Wang, H. Yin, Y. Wang, Opt. Laser Technol. 2020, 124, 106003.
P. Ju, W. Fan, W. Gao, T. Zhang, Results Phys. 2023, 44, 106115.
Y. Cai, H. T. Eyyuboglu, Y. Baykal, Appl. Phys. B 2007, 88, 467.
P. Coullet, L. Gil, F. Rocca, Opt. Commun. 1989, 73, 403.
R. K. Singh, A. M. Sharma, P. Senthilkumaran, Opt. Lett. 2015, 40, 2751.
H. Liu, Y. Lü, J. Xia, D. Chen, W. He, X. Pu, Opt. Express 2016, 24, 19695.
J. Zhao, G. Wang, X. Ma, H. Zhong, H. Yin, Y. Wang, D. Liu, Photonics 2020, 8, 5.
J. Wang, M. Wang, S. Lei, Z. Tan, C. Wang, Y. Wang, Photonics 2021, 8, 512.
K. Elmabruk, H. T. Eyyuboglu, Opt. Eng. 2019, 58, 066115.
J. Li, B. Lü, J. Opt. A: Pure Appl. Opt. 2009, 11, 045710.
J. Zhang, J. Xie, D. Deng, Opt. Express 2018, 26, 21249.
V. S. Sirazetdinov, Appl. Opt. 2008, 47, 975.
L. Sjöqvist, Proc. SPIE, Technologies for Optical Countermeasures V, SPIE, Bellingham, WA 2008, p. 67.
M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, E. Sucher, Proc. SPIE, Technologies for Optical Countermeasures V, SPIE, Bellingham, WA 2008, p. 71150E.
C. Ding, O. Korotkova, D. Li, D. Zhao, L. Pan, Opt. Express 2020, 28, 1037.
Y. Zhang, T. Hou, Q. Chang, H. Chang, J. Long, P. Ma, P. Zhou, IEEE Photonics J. 2020, 12, 6501113.
M. Bayraktar, Phys. Scr. 2022, 97, 085503.
H. Nabil, A. Balhamri, A. Belafhal, Opt. Quantum Electron. 2022, 54, 231.
H. Nabil, A. Balhamri, A. Belafhal, Opt. Quantum Electron. 2022, 54, 332.
H. Nabil, A. Balhamri, A. Belafhal, Opt. Quantum Electron. 2022, 54, 404.
H. Nabil, M. Bayraktar, A. Balhamri, A. Belafhal, Optik 2023, 272, 170360.
M. Bayraktar, B. Akin, M. B. Isik, Opt. Quantum Electron. 2022, 54, 516.
Y. Q. Zhang, Y. Deng, T.-Y. Hou, P.-F. Ma, R.-T. Su, P. Zhou, Ann. Phys. 2022, 534, 2100537.
O. Bozat, U. G. Yasa, Z. G. Figen, A. R. Bozbulut, Proc. SPIE, Technologies for Optical Countermeasures XVI, SPIE, Bellingham, WA 2019, p. 111610B.
U. G. Yasa, O. Bozat, Z. G. Figen, A. R. Bozbulut, Infrared Phys. Technol. 2021, 115, 103728.
A. Basaran, Z. G. Figen, Proc. SPIE, Technologies for Optical Countermeasures XVI, SPIE, Bellingham, WA, 2019, p. 111610M.
M. Z. Keskin, Z. G. Figen, I. T. Ozdur, Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD) Turin, 2022, Vol. 143.
O. Korotkova, Random Light Beams: Theory and Applications, CRC Press, Boca Raton, FL 2014.
H. T. Yura, Appl. Opt. 1972, 11, 1399.
I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals Series and Products, 7th ed., Academic press publication, Massachusetts, USA 2007.
A. Belafhal, Z. Hricha, L. Dalil-Essakali, T. Usman, Adv. Math. Models Appl. 2020, 5, 313.