Article (Périodiques scientifiques)
Can Anaphora Resolution Improve Extractive Query-Focused Multi-Document Summarization?
LAMSIYAH, Salima; El Mahdaouy, Abdelkader; SCHOMMER, Christoph
2023In IEEE Access, p. 1-1
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Can_Anaphora_Resolution_Improve_Extractive_Query-Focused_Multi-Document_Summarization.pdf
Postprint Éditeur (1.71 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Query-Focused Multi-Document Summarization; Contextual Embeddings; Anaphora Resolution; Sentence-BERT; SpanBERT
Résumé :
[en] Query-Focused Multi-Document Summarization (QF-MDS) is the task of automatically generating a summary from a collection of documents that answers a specific user's query. Extractive methods are primarily based on identifying, selecting, and ranking sentences according to their relevance to the given query. These methods have shown promising results; however, they may yield incoherent summaries when pronominal anaphoric expressions appear unbound. To address this issue, this paper proposes a novel method that leverages both contextual embeddings and anaphora resolution methods. More specifically, the Sentence-BERT (SBERT) model is employed to generate contextual embeddings for the sentences in the documents and the user's query. Additionally, the SpanBERT model is utilized to resolve unbound pronominal references in the input sentences of the documents, aiming to improve the cohesiveness of the generated summaries. We have conducted a comprehensive comparative analysis using quantitative and qualitative evaluations against other state-of-the-art systems on the standard DUC'2005 and DUC'2007 datasets. The results obtained show that the proposed method is competitive and outperforms recent query-focused multi-document summarization systems on certain ROUGE evaluation measures. Furthermore, human evaluation results further confirm that our method is able to generate more informative, cohesive, and less redundant summaries.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LAMSIYAH, Salima  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
El Mahdaouy, Abdelkader
SCHOMMER, Christoph  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Can Anaphora Resolution Improve Extractive Query-Focused Multi-Document Summarization?
Date de publication/diffusion :
2023
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Pagination :
1-1
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 15 septembre 2023

Statistiques


Nombre de vues
142 (dont 10 Unilu)
Nombre de téléchargements
62 (dont 1 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
3
citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu