Article (Périodiques scientifiques)
Evaluation of crowdsourced mortality prediction models as a framework for assessing artificial intelligence in medicine.
Bergquist, Timothy; Schaffter, Thomas; Yan, Yao et al.
2023In Journal of the American Medical Informatics Association
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
2021.01.18.21250072v1.full.pdf
Preprint Auteur (830.72 kB)
Télécharger

The original article is available at https://doi.org/10.1093/jamia/ocad159


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
evaluation; health informatics; machine learning
Résumé :
[en] OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Bergquist, Timothy
Schaffter, Thomas
Yan, Yao
Yu, Thomas
Prosser, Justin
Gao, Jifan
Chen, Guanhua
Charzewski, Łukasz
Nawalany, Zofia
Brugere, Ivan
Retkute, Renata
Prusokas, Alidivinas
Prusokas, Augustinas
Choi, Yonghwa
Lee, Sanghoon
Choe, Junseok
Lee, Inggeol
Kim, Sunkyu
Kang, Jaewoo
Mooney, Sean D.
Guinney, Justin
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Ghosh, Soumyabrata
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Satagopam, Venkata
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Plus d'auteurs (299 en +) Voir moins
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Evaluation of crowdsourced mortality prediction models as a framework for assessing artificial intelligence in medicine.
Date de publication/diffusion :
2023
Titre du périodique :
Journal of the American Medical Informatics Association
ISSN :
1067-5027
eISSN :
1527-974X
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Systems Biomedicine
Commentaire :
© The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Disponible sur ORBilu :
depuis le 23 août 2023

Statistiques


Nombre de vues
374 (dont 7 Unilu)
Nombre de téléchargements
193 (dont 2 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
2
citations OpenAlex
 
8

Bibliographie


Publications similaires



Contacter ORBilu