Article (Scientific journals)
Evaluation of crowdsourced mortality prediction models as a framework for assessing artificial intelligence in medicine.
Bergquist, Timothy; Schaffter, Thomas; Yan, Yao et al.
2023In Journal of the American Medical Informatics Association
Peer Reviewed verified by ORBi
 

Files


Full Text
2021.01.18.21250072v1.full.pdf
Author preprint (830.72 kB)
Download

The original article is available at https://doi.org/10.1093/jamia/ocad159


All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
evaluation; health informatics; machine learning
Abstract :
[en] OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Biomedical Data Science (Glaab Group)
Disciplines :
Human health sciences: Multidisciplinary, general & others
Life sciences: Multidisciplinary, general & others
Author, co-author :
Bergquist, Timothy
Schaffter, Thomas
Yan, Yao
Yu, Thomas
Prosser, Justin
Gao, Jifan
Chen, Guanhua
Charzewski, Łukasz
Nawalany, Zofia
Brugere, Ivan
Retkute, Renata
Prusokas, Alidivinas
Prusokas, Augustinas
Choi, Yonghwa
Lee, Sanghoon
Choe, Junseok
Lee, Inggeol
Kim, Sunkyu
Kang, Jaewoo
Mooney, Sean D.
Guinney, Justin
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
GLAAB, Enrico  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Biomedical Data Science
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Ghosh, Soumyabrata
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Satagopam, Venkata
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
Lee, Aaron
Salehzadeh-Yazdi, Ali
Prusokas, Alidivinas
Basu, Anand
Belouali, Anas
Becker, Ann-Kristin
Israel, Ariel
Prusokas, Augustinas
Winter, B.
Moreno, Carlos Vega
Kurz, Christoph
Waltemath, Dagmar
Schweinoch, Darius
Luo, Gang
Chen, Guanhua
Zacharias, Helena U.
Qiao, Hezhe
Lee, Inggeol
Brugere, Ivan
Kang, Jaewoo
Gao, Jifan
Truthmann, Julia
Choe, Junseok
Stephens, Kari A.
Kaderali, Lars
Varshney, Lav R.
Vollmer, Marcus
Pandi, Maria-Theodora
Gunn, Martin L.
Yetisgen, Meliha
Nath, Neetika
Hammarlund, Noah
Müller-Stricker, Oliver
Togias, Panagiotis
Heagerty, Patrick J.
Muir, Peter
Banda, Peter
Retkute, Renata
Henkel, Ron
Madgi, Sagar
Gupta, Samir
Lee, Sanghoon
Mooney, Sean
Kannattikuni, Shabeeb
Sarhadi, Shamim
Omar, Shikhar
Wang, Shuo
Neumann, Stefan
Simm, Stefan
Madhavan, Subha
Kim, Sunkyu
Von Yu, Thomas
Pejaver, Vikas
Gupta, Yachee
Choi, Yonghwa
Nawalany, Zofia
Charzewski, Łukasz
More authors (299 more) Less
External co-authors :
yes
Language :
English
Title :
Evaluation of crowdsourced mortality prediction models as a framework for assessing artificial intelligence in medicine.
Publication date :
2023
Journal title :
Journal of the American Medical Informatics Association
ISSN :
1067-5027
eISSN :
1527-974X
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Systems Biomedicine
Commentary :
© The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Available on ORBilu :
since 23 August 2023

Statistics


Number of views
216 (7 by Unilu)
Number of downloads
165 (2 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0

Bibliography


Similar publications



Contact ORBilu